Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analytical modelling of the linear switched reluctance motor with segmental translator

Because of similar structure and operation principles, the linear switched reluctance motor (LSRM) has all advantages of rotary switched reluctance motor. Also, segmental translator LSRM (STLSRM) has the capability to produce higher output power/weight when it is compared with the conventional LSRM. Due to the high advantages of the STLSRM, electromagnetic modelling of this motor is considered in this study. By the direct solution of the field equations, an analytical model is introduced for the STLSRM by which the static characteristic of flux-linkage with a phase for various phase currents and different translator positions is determined. Having this static characteristic, dynamic analysis of the motor is then carried out based on the phase voltage equation to predict the phase current and instantaneous thrust waveforms. Due to the high speed of the developed model, it can be utilised appropriately for the initial sizing of the machine where accuracy can be traded with time-saving. Applying the proposed analytical model to a typical three-phase STLSRM, simulation results are presented and they are validated using the finite element (FE) calculations.

References

    1. 1)
      • 19. Radun, A.V.: ‘Analytical calculation the switched reluctance motor's unaligned inductance’, IEEE Trans. Magn., 1999, 35, (6), pp. 44734481.
    2. 2)
      • 1. Miller, T.J.E.: ‘Switched reluctance motor and their control’ (Oxford, Clarendon, UK, 1993).
    3. 3)
      • 24. Mihic, D.S., Terzic, M.V., Vukosavic, S.N.: ‘A new nonlinear analytical model of the SRM with included multiphase coupling’, IEEE Trans. Energy Convers., 2017, 32, (4), pp. 13221334.
    4. 4)
      • 11. Jang, S.M., Park, J.H., Choi, J.Y., et al: ‘Analytical prediction and measurements for inductance profile of linear switched reluctance motor’, IEEE Trans. Magn., 2006, 42, (10), pp. 34283430.
    5. 5)
      • 4. Lim, H.S., Krishnan, R., Lobo, N.S.: ‘Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 534542.
    6. 6)
      • 12. Vattikuti, N., Malkani, V.R., Fernandes, B.G.: ‘A novel high force density linear segmented switched reluctance machine’. 34th Annual Conf. of IEEE Industrial Electronics, Orlando, FL, 2008, pp. 10831088.
    7. 7)
      • 8. Mecrow, B.C., El-Kharashi, E.A., Finch, J.W., et al: ‘Preliminary performance evaluation of switched reluctance motors with segmental rotors’, IEEE Trans. Energy Convers., 2004, 19, (4), pp. 679686.
    8. 8)
      • 22. Song, S., Zhang, M., Ge, L.: ‘A new decoupled analytical modeling method for switched reluctance machine’, IEEE Trans. Magn., 2015, 51, (3), Article #: 8100504.
    9. 9)
      • 23. Uddin, W., Sozer, Y.: ‘Analytical modeling of mutually coupled switched reluctance machines under saturation based on design geometry’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 44314440.
    10. 10)
      • 7. Mecrow, B.C., Finch, J.W., El-Kharashi, E.A., et al: ‘Switched reluctance motors with segmental rotors’, IEE Proc., Electr. Power Appl., 2002, 149, (4), pp. 245254.
    11. 11)
      • 6. Wang, D., Wang, X., Du, X.F.: ‘Design and comparison of a high force density dual-side linear switched reluctance motor for long rail propulsion application with low cost’, IEEE Trans. Magn., 2017, 53, (6), article number: 7207204.
    12. 12)
      • 20. Radun, A.V.: ‘Analytically computing the flux linked by a switched reluctance motor phase when the stator and rotor Poles overlap’, IEEE Trans. Magn., 2000, 36, (4), pp. 19962003.
    13. 13)
      • 16. Ganji, B., Askari, M.H.: ‘Analysis and modeling of different topologies for linear switched reluctance motor using finite element method’, Alexandria Eng. J., 2016, 55, pp. 25312538.
    14. 14)
      • 15. Pan, J.F., Zou, Y., Cao, G.: ‘An asymmetric linear switched reluctance motor’, IEEE Trans. Energy Convers., 2013, 28, (2), pp. 444451.
    15. 15)
      • 13. Amoros, J.G., Andrada, P.: ‘Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance motor’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 311319.
    16. 16)
      • 10. Lee, B.S., Bae, H.K., Vijayraghavan, P., et al: ‘Design of a linear switched reluctance machine’, IEEE Trans. Ind. Appl., 2000, 36, (6), pp. 15711580.
    17. 17)
      • 2. Krishnan, R.: ‘Switched reluctance motor drives: modeling, simulation, analysis, design, and applications’ (CRC press, USA, 2001).
    18. 18)
      • 17. Wang, D., Zhang, D., Du, X., et al: ‘Unitized design methodology of linear switched reluctance motor with segmental secondary for long rail propulsion application’, IEEE Trans. Ind. Electron., 2018, 65, pp. 98849894.
    19. 19)
      • 21. Ding, W., Liang, D.: ‘A fast analytical model for an integrated switched reluctance starter/generator’, IEEE Trans. Energy Convers., 2010, 25, (4), pp. 948956.
    20. 20)
      • 3. Lim, H.S., Krishnan, R.: ‘Ropeless elevator with linear switched reluctance motor drive actuation systems’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 22092218.
    21. 21)
      • 14. Zhang, Z., Cheung, N.C., Cheng, K.W.E., et al: ‘Longitudinal and transversal end-effects analysis of linear switched reluctance motor’, IEEE Trans. Magn., 2011, 47, (10), pp. 29792982.
    22. 22)
      • 5. Masoudi, S., Feyzi, M.R., Sharifian, M.B.: ‘Force ripple and jerk minimisation in double sided linear switched reluctance motor used in elevator application’, IET Electr. Power Appl., 2016, 10, (6), pp. 508516.
    23. 23)
      • 9. Deshpande, U.S., Cathey, J.J., Richter, E.: ‘A high force density linear switched reluctance machine’, IEEE Trans. Ind. Appl., 1995, 31, (2), pp. 345352.
    24. 24)
      • 18. Wang, D., Du, X., Zhang, D., et al: ‘Design, optimization, and prototyping of segmental-type linear switched-reluctance motor with a toroidally wound mover for vertical propulsion application’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 18651874.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5516
Loading

Related content

content/journals/10.1049/iet-epa.2018.5516
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address