Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Methods for overcoming misalignment effects and charging control of a dynamic wireless electric vehicle charging system

A new method of power control for wireless power transmission (WPT) system has been proposed and analysed. The circuit and method suggested in this study holds good promise of reducing switching loss in the high-frequency converter of WPT. The effect of misalignment between transmitter and receiver coils has been analysed and a simple remedial method has been proposed. The desirability of frequency tuning of converter's output voltage under varying degrees of misalignment has been highlighted. The conventional perturb and observe method for maximum power point tracking has been gainfully employed here to achieve the required frequency tuning of the proposed converter. The proposed methods are implemented and tested on laboratory scale. Some suggestions have been given for augmenting driver assistance system aimed at limiting lateral misalignment in dynamic WPT system. The suggested algorithm is tested in a laboratory environment using a simple communication system.

References

    1. 1)
      • 3. Miller, J.M., Onar, O.C., Chinthavali, M.: ‘Primary-side power flow control of wireless power transfer for electric vehicle charging’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (1), pp. 147162.
    2. 2)
      • 5. Buja, G., Bertoluzzo, M., Dashora, H.K.: ‘Lumped track layout design for dynamic wireless charging of electric vehicles’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 66316640.
    3. 3)
      • 17. Aldhaher, S., Luk, P.C.K., Whidborne, J.F.: ‘Tuning class E inverters applied in inductive links using saturable reactors’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 29692978.
    4. 4)
      • 9. Gil, A., Sauras-Perez, P., Taiber, J.: ‘Communication requirements for dynamic wireless power transfer for battery electric vehicles’. Proc. Int. Conf. Electric Vehicle, Florence, December 2014, pp. 17.
    5. 5)
      • 4. Shin, J., Shin, S., Kim, Y., et al: ‘Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 11791192.
    6. 6)
      • 1. Wang, C.S., Covic, G.A., Stielau, O.H.: ‘Investigating an LCL load resonant inverter for inductive power transfer applications’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 9951002.
    7. 7)
      • 10. Echols, A., Mukherjee, S., Mickelsen, M., et al: ‘Communication infrastructure for dynamic wireless charging of electric vehicles’. Proc. Conf. Wireless Communications and Networking, San Francisco, CA, May 2017, pp. 16.
    8. 8)
      • 21. Moradewicz, A.J., Kazmierkowski, M.P.: ‘Contactless energy transfer system with FPGA-controlled resonant converter’, IEEE Trans. Ind. Electron., 2010, 57, (9), pp. 31813190.
    9. 9)
      • 6. Wang, Z., Cui, S., Han, S., et al: ‘A novel magnetic coupling mechanism for dynamic wireless charging system for electric vehicles’, IEEE Trans. Veh. Technol., 2018, 67, (1), pp. 124133.
    10. 10)
      • 16. Choi, J., Tsukiyama, D., Tsuruda, Y., et al: ‘High-frequency, high-power resonant inverter with eGaN FET for wireless power transfer’, IEEE Trans. Power Electron., 2018, 33, (3), pp. 18901896.
    11. 11)
      • 13. Rivas, J.M., Han, Y., Leitermann, O., et al: ‘A high-frequency resonant inverter topology with low voltage stress’, IEEE Trans. Power Electron., 2008, 23, (4), pp. 17591771.
    12. 12)
      • 19. Chen, C., Xu, X., Divan, D.M.: ‘Conductive electromagnetic interference (EMI) noise evaluation for an actively clamped resonant DC link inverter (ACRDCLI) for electric vehicle (EV) traction drive applications’. Proc. Int. Conf. Industry Applications, New Orleans, LA, USA, October 1997, pp. 15501557.
    13. 13)
      • 11. Naberezhnykh, D., Reed, N., Ognissanto, F., et al: ‘Operational requirements for dynamic wireless power transfer systems for electric vehicles’. Proc. Int. Conf. Electric Vehicle, Florence, December 2014, pp. 18.
    14. 14)
      • 8. Zhu, Q., Wang, L., Guo, Y., et al: ‘Applying LCC compensation network to dynamic wireless EV charging system’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 65576567.
    15. 15)
      • 15. Hayati, M., Roshani, S., Roshani, S., et al: ‘Design of class E power amplifier with new structure and flat top switch voltage waveform’, IEEE Trans. Power Electron., 2018, 33, (3), pp. 25712579.
    16. 16)
      • 7. Fujita, T., Yasuda, T., Akagi, H.: ‘A dynamic wireless power transfer system applicable to a stationary system’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 37483757.
    17. 17)
      • 14. Divan, D.M.: ‘The resonant DC link converter-a new concept in static power conversion’, IEEE Trans. Ind. Appl., 1989, 25, (2), pp. 317325.
    18. 18)
      • 18. Divan, D.M., Skibinski, G.: ‘Zero-switching-loss inverters for high-power applications’, IEEE Trans. Ind. Appl., 1989, 25, (4), pp. 634643.
    19. 19)
      • 22. Zhang, W., Mi, C.C.: ‘Compensation topologies of high-power wireless power transfer systems’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 47684778.
    20. 20)
      • 12. Sokal, N.O., Sokal, A.D.: ‘Class E-A new class of high-efficiency tuned single-ended switching power amplifiers’, IEEE J. Solid-State Circuits, 1975, 10, (3), pp. 168176.
    21. 21)
      • 2. Sallan, J., Villa, J.L., Llombart, A., et al: ‘Optimal design of ICPT systems applied to electric vehicle battery charge’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 21402149.
    22. 22)
      • 20. Liu, J., Chan, K.W., Chung, C.Y., et al: ‘Single-stage wireless-power-transfer resonant converter with boost bridgeless power-factor-correction rectifier’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 21452155.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5509
Loading

Related content

content/journals/10.1049/iet-epa.2018.5509
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address