access icon free VSP predictive torque control of PMSM

This study applies the idea of variable switching point (VSP) to the predictive torque control (PTC) strategy for permanent magnet synchronous motor (PMSM) and proposes a new method to suppress the torque ripple of PMSM, without causing higher switching frequency. In this study, the head vector and tail vector act together in one control period. They form an infinite synthesised vector set based on VSP control. According to the distribution of all synthesised vectors and the position of expected voltage vector, the candidate VVs table containing duty ratio information is constructed off-line. By using the position information of expected voltage vector and the tail vector of the previous period, 3–5 candidate VVs in the table can be directly obtained, so the VSP predictive control can be realised without calculating the switching time online. The experimental results show that the proposed VSP-PTC can effectively suppress the torque ripple without causing high switching frequency.

Inspec keywords: synchronous motors; torque control; predictive control; permanent magnet motors; vectors; machine control; switching convertors

Other keywords: PMSM; infinite synthesised vector; synthesised vectors; VSP-PTC; position information; high switching frequency; VSP predictive torque control; torque ripple; expected voltage vector; VSP predictive control; variable switching point; higher switching frequency; previous period; tail vector; control period; DB-VV; VSP control; head vector; candidate VVs table containing duty ratio information; 3–5 candidate VVs; switching time online; predictive torque control strategy; permanent magnet synchronous motor

Subjects: Optimal control; Control of electric power systems; Synchronous machines; Mechanical variables control

References

    1. 1)
      • 1. Moon, H.T., Kim, H.S., Youn, M.J.: ‘A discrete-time predictive current control for PMSM’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 464472.
    2. 2)
      • 10. Zhang, Y., Yang, H.: ‘Generalized two-vector-based model predictive torque control of induction motor drives’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 38183829.
    3. 3)
      • 8. Maeda, T., Doki, S.: ‘Improvement of torque control system of PMSM based on model predictive control’. Proc. 37th Annual Conf. IEEE Industrial Electronics Society, Melbourne, VIC, November 2011, pp. 18911896.
    4. 4)
      • 6. Xia, C., Wang, S., Gu, X., et al: ‘Direct torque control for VSI-PMSM using vector evaluation factor table’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 45714583.
    5. 5)
      • 5. Zhang, Y., Zhu, J.: ‘Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 235248.
    6. 6)
      • 17. Li, C., Xia, C., Zhou, Z., et al: ‘Torque ripple reduction of permanent magnet synchronous motors based on predictive sequence control’. Int. Conf. Electrical Machines and Systems, Sydney, Australia, August 2017, pp. 15.
    7. 7)
      • 16. Vazquez, S., Aguilera, R.P., Acuna, P., et al: ‘Model predictive control for single-phase NPC converters based on optimal switching sequences’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 75337541.
    8. 8)
      • 7. Xia, C., Qiu, X., Wang, Z., et al: ‘Predictive torque control for voltage source inverter-permanent magnet synchronous motor based on equal torque effect’, IET Electr. Power Appl., 2016, 10, (3), pp. 208216.
    9. 9)
      • 13. Zhou, Z., Xia, C., Yan, Y., et al: ‘Torque ripple minimization of predictive torque control for PMSM with extended control set’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 69306939.
    10. 10)
      • 18. Karamanakos, P., Stolze, P., Kennel, R., et al: ‘Variable switching point predictive torque control of induction machines’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (2), pp. 285295.
    11. 11)
      • 19. Karamanakos, P., Stolze, P., Kennel, R., et al: ‘Variable switching point predictive torque control’. Proc. IEEE Int. Conf. Industrial Technol., Cape Town, South Africa, February 2013, pp. 422427.
    12. 12)
      • 4. Sreejeth, M., Singh, M., Kumar, P.: ‘Particle swarm optimisation in efficiency improvement of vector controlled surface mounted permanent magnet synchronous motor drive’, IET Power Electron., 2015, 8, (5), pp. 760769.
    13. 13)
      • 14. Zhang, Y., Zhu, J.: ‘A novel duty cycle control strategy to reduce both torque and flux ripples for DTC of permanent magnet synchronous motor drives with switching frequency reduction’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 30553067.
    14. 14)
      • 9. Zhang, Y., Yang, H.: ‘Model predictive torque control of induction motor drives with optimal duty cycle control’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 65936603.
    15. 15)
      • 21. Xia, C., Chen, H., Li, X., et al: ‘Direct self-control strategy for brushless DC motor with reduced torque ripple’, IET Electr. Power Appl., 2018, 12, (3), pp. 398404.
    16. 16)
      • 11. Pacas, M., Weber, J.: ‘Predictive direct torque control for the PM synchronous machine’, IEEE Trans. Ind. Electron., 2005, 52, (5), pp. 13501356.
    17. 17)
      • 2. Buja, G., Kazmierkowski, M.: ‘Direct torque control of PWM inverter-fed AC motors – a survey’, IEEE Trans. Ind. Electron., 2004, 51, (4), pp. 744757.
    18. 18)
      • 3. Xie, W., Wang, X., Wang, F., et al: ‘Dynamic loss minimization of finite control set-model predictive torque control for electric drive system’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 849860.
    19. 19)
      • 15. Vazquez, S., Marquez, A., Aguilera, R., et al: ‘Predictive optimal switching sequence direct power control for grid-connected power converters’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 20102020.
    20. 20)
      • 22. Lee, J.S., Choi, C.H., Seok, J.K., et al: ‘Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator flux linkage observer’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 17491758.
    21. 21)
      • 20. Karamanakos, P., Ayad, A.F., Kennel, R.: ‘A variable switching point predictive current control strategy for quasi-Z-source inverters’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 14691480.
    22. 22)
      • 12. Abad, G., Rodriguez, M.A., Poza, J.: ‘Two-level VSC-based predictive direct power control of the doubly fed induction machine with reduced power ripple at low constant switching frequency’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 570580.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5497
Loading

Related content

content/journals/10.1049/iet-epa.2018.5497
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading