access icon free Minimising torque ripple of SRM by applying DB-DTFC

Since the traditional direct torque control (DTC) of switched reluctance motors (SRMs) has the shortcomings of large torque ripple and non-constant switching frequency, this study proposes the deadbeat-direct torque and flux-linkage control (DB-DTFC) method for SRM. By analysing the basic principles of SRM, a discrete-time model is established to predict the future states of the SRM drive system. With DB-DTFC, the stator flux and torque can be manipulated during each pulse-width modulation cycle to minimise torque ripple during operation. As a result, the proposed DB-DTFC can minimise the torque ripple as well as apply space-vector modulation with a constant switching frequency. Finally, to verify its effectiveness, DB-DTFC was applied to the 15 kW three-phase 12/8-pole SRM test bench in real time and the results are compared with conventional DTC.

Inspec keywords: torque; reluctance motor drives; magnetic flux; stators; reluctance motors; machine control; torque control

Other keywords: constant switching frequency; SRM drive system; minimising torque ripple; traditional direct torque control; deadbeat-direct torque; switched reluctance motors; stator flux; 15 kW three-phase 12/8-pole SRM test bench; DB-DTFC

Subjects: Synchronous machines; Drives; Mechanical variables control; Control of electric power systems

References

    1. 1)
      • 6. Chiba, A., Kiyota, K., Hoshi, N., et al: ‘Development of a rare-earth-free SR motor with high torque density for hybrid vehicles’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 175182.
    2. 2)
      • 15. Kenny, B.H., Lorenz, R.D.: ‘Stator- and rotor-flux-based deadbeat direct torque control of induction machines’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 10931101.
    3. 3)
      • 24. Nagel, N.J., Lorenz, R.D.: ‘Modelling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation’, IEEE Trans. Ind. Appl., 2000, 36, (3), pp. 714722.
    4. 4)
      • 19. Xu, W., Lorenz, R.D.: ‘Dynamic loss minimization using improved deadbeat-direct torque and flux control for interior permanent-magnet synchronous machines’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 10531065.
    5. 5)
      • 13. Ai-de, X., Xianchao, Z., Kunlun, H., et al: ‘Torque-ripple reduction of SRM using optimised voltage vector in DTC’, IET Electr. Syst. Transp., 2018, 8, (1), pp. 3543.
    6. 6)
      • 2. Matsui, N., Akao, N., Wakino, T.: ‘High-precision torque control of reluctance motors’, IEEE Trans. Ind. Appl., 1991, 27, (5), pp. 902907.
    7. 7)
      • 21. Saur, M., Gaona Erazo, D.E., Zdravkovic, J., et al: ‘Minimizing torque ripple of highly saturated salient pole synchronous machines by applying DB-DTFC’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 36433651.
    8. 8)
      • 26. Habetler, T.G., Profumo, F., Pastorelli, M.: ‘Direct torque control of induction machines over a wide speed range’. Conf. Record 1992 IEEE Industry Applications Society Annual Meeting, Houston, TX, vol. 1, 1992, pp. 600606.
    9. 9)
      • 23. Saur, M., Ramos, F., Perez, A., et al: ‘Implementation of deadbeat-direct torque and flux control for synchronous reluctance machines to minimize loss each switching period’. 2016 IEEE Applied Power Electronics Conf. Exposition (APEC), Long Beach, CA, 2016, pp. 215220.
    10. 10)
      • 17. Lorenz, R.D.: ‘The emerging role of dead-beat, direct torque and flux control in the future of induction machine drives’. 2008 11th Int. Conf. Optimization of Electrical and Electronic Equipment, Brasov, 2008, pp. 1927.
    11. 11)
      • 11. Xu, Y.Z., Zhong, R., Chen, L., et al: ‘Analytical method to optimise turn-on angle and turn-off angle for switched reluctance motor drives’, IET Electr. Power Appl., 2012, 6, p. 593.
    12. 12)
      • 3. Xu, A.D., Fan, Y.H., Li, Z.Q.: ‘SRM torque ripple minimization based on space voltage vector’, Electr. Mach. Control, 2010, 14, (1), pp. 3540.
    13. 13)
      • 4. Nakao, N., Akatsu, K.: ‘Vector control specialized for switched reluctance motor drives’. 2014 Int. Conf. Electrical Machines (ICEM), Berlin, 2014, pp. 943949.
    14. 14)
      • 18. Zou, J., Xu, W., Ye, C.: ‘Improved deadbeat control strategy for linear induction machine’, IEEE Trans. Magn., 2017, 53, (6), pp. 14.
    15. 15)
      • 20. Lee, J.S., Choi, C.H., Seok, J.K., et al: ‘Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator flux linkage observer’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 17491758.
    16. 16)
      • 9. Narla, S., Sozer, Y., Husain, I.: ‘Switched reluctance generator controls for optimal power generation and battery charging’, IEEE Trans. Ind. Appl., 2012, 48, (5), pp. 14521459.
    17. 17)
      • 10. Ye, J., Bilgin, B., Emadi, A.: ‘An offline torque sharing function for torque ripple reduction in switched reluctance motor drives’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 726735.
    18. 18)
      • 8. Mohamadi, M., Rashidi, A., Nejad, S.M.S., et al: ‘A switched reluctance motor drive based on quasi Z-source converter with voltage regulation and power factor correction’, IEEE Trans. Ind. Electron., 2018, 65, (10), pp. 83308339.
    19. 19)
      • 25. Nakao, N., Akatsu, K.: ‘Vector control for switched reluctance motor drives using an improved current controller’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 13791386.
    20. 20)
      • 22. Nie, Y., Brown, I.P., Ludois, D.C.: ‘Deadbeat-direct torque and flux control for wound field synchronous machines’, IEEE Trans. Ind. Electron., 2108, 65, (3), pp. 20692079.
    21. 21)
      • 14. Li, C., Wang, G., Li, Y., et al: ‘An improved finite-state predictive torque control for switched reluctance motor drive’, IET Electr. Power Appl., 2018, 12, (1), pp. 144151.
    22. 22)
      • 12. Cheok, A.D., Fukuda, Y.: ‘A new torque and flux control method for switched reluctance motor drives’, IEEE Trans. Power Electron., 2002, 17, (4), pp. 543557.
    23. 23)
      • 1. Staton, D.A., Soong, W.L., Miller, T.J.E.: ‘Unified theory of torque production in switched reluctance and synchronous reluctance motors’, IEEE Trans. Ind. Appl., 1995, 31, (2), pp. 329337.
    24. 24)
      • 5. Kiyota, K., Kakishima, T., Chiba, A.: ‘Comparison of test result and design stage prediction of switched reluctance motor competitive with 60 kW rare-earth PM motor’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 57125721.
    25. 25)
      • 7. Bilgin, B., Emadi, A., Krishnamurthy, M.: ‘Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 25642575.
    26. 26)
      • 16. Lee, J.-H., Kim, C.-G., Youn, M.-J.: ‘A dead-beat type digital controller for the direct torque control of an induction motor’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 739746.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5441
Loading

Related content

content/journals/10.1049/iet-epa.2018.5441
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading