access icon free Performance prediction of surface-mounted permanent magnet synchronous motor based on ring specimen test result

The B–H curve and iron loss of electrical steel sheets are essential data for predicting the performance of electric motors. The Epstein frame test is widely adopted to acquire these magnetic properties. However, for rotating electric machines with relatively small geometry, the ring specimen test is preferred because of its simplicity and geometric similarity. This study deals with the experimental verification of the ring specimen test. The B–H curve and iron loss of non-oriented electrical steel sheets are measured via the Epstein frame test and the ring specimen test. Each result is applied in finite element analysis (FEA) of the fabricated electric motor. Furthermore, using these FEA results and the d-q-axis equivalent circuit, the performance of the electric motor is predicted. For experimental verification, electric motor tests are performed under no-load and load conditions.

Inspec keywords: equivalent circuits; synchronous motors; permanent magnet motors; electric machines; finite element analysis

Other keywords: fabricated electric motor; ring specimen test result; iron loss; electric motor tests; surface-mounted permanent magnet synchronous motor; nonoriented electrical steel sheets; electric machines; performance prediction; Epstein frame test

Subjects: Synchronous machines; a.c. machines; d.c. machines; Control of electric power systems; Numerical analysis; Finite element analysis

References

    1. 1)
      • 22. Venkatachalam, K., Sullivan, C., Abdallah, T., et al: ‘Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters’. 2002 IEEE Workshop Comput. Power Electron., Mayaguez, Puerto Rico, USA, 2002.
    2. 2)
      • 16. IEC62044-3: ‘Cores made of soft magnetic materials – measuring methods – part 3: magnetic properties at high excitation level’, 2000.
    3. 3)
      • 25. Lim, M.-S., Chai, S.-H., Yang, J.-S., et al: ‘Design and verification of 150-krpm PMSM based on experiment results of prototype’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 78277836.
    4. 4)
      • 3. Modrijan, G., Petkovsek, M., Zajec, P., et al: ‘Precision B-H analyzer with low THD secondary induced voltage’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 364370.
    5. 5)
      • 21. Li, J., Abdallah, T., Sullivan, C.: ‘Improved calculation of core loss with nonsinusoidal waveforms’. Conf. Rec. 2001 IEEE Ind. Appl. Conf. 36th IAS Ann. Meeting (Cat. No.01CH37248), Chicago, IL, USA, 2001.
    6. 6)
      • 10. Hamzehbahmani, H., Anderson, P., Preece, S.: ‘Application of an advanced eddy-current loss modelling to magnetic properties of electrical steel laminations in a wide range of measurements’, IET Sci. Meas. Technol., 2015, 9, (7), pp. 807816.
    7. 7)
      • 18. Lim, M.S., Chai, S.H., Hong, J.P.: ‘Design and iron loss analysis of sensorless-controlled interior permanent magnet synchronous motors with concentrated winding’, IET Electr. Power Appl., 2014, 8, (9), pp. 349356.
    8. 8)
      • 11. Baghayipour, M., Darabi, A., Dastfan, A.: ‘Detailed analytical method for predicting the steady-state time variations and entire harmonic contents of principal performance characteristics in a non-slotted axial flux permanent magnet motor, considering a precise iron loss model’, IET Electr. Power Appl., 2018, 12, (3), pp. 308322.
    9. 9)
      • 15. Czichos, H., Saito, T., Smith, L.: ‘Handbook of materials measurement methods’ (Springer, Germany, 2006).
    10. 10)
      • 12. Baghayipour, M., Darabi, A., Dastfan, A.: ‘An analytical model of harmonic content no-load magnetic fields and back EMF in axial flux PM machines regarding the iron saturation and winding distribution’, COMPEL – Int. J. Compu. Math. Electr. Electron. Eng., 2018, 37, (1), pp. 5476.
    11. 11)
      • 23. Takeda, Y., Takahashi, Y., Fujiwara, K., et al: ‘Iron loss estimation method for rotating machines taking account of hysteretic property’, IEEE Trans. Magn., 2015, 51, (3), pp. 14.
    12. 12)
      • 19. Nam, H., Ha, K.-H., Lee, J.-J., et al: ‘A study on iron loss analysis method considering the harmonics of the flux density waveform using iron loss curves tested on Epstein samples’, IEEE Trans. Magn., 2003, 39, (3), pp. 14721475.
    13. 13)
      • 5. Tellini, B., Giannetti, R., Lizon-Martinez, S.: ‘Characterization of the accommodation effect in soft hysteretic materials via sensorless measurement technique’, IEEE Trans. Instrum. Meas., 2009, 58, (8), pp. 28072814.
    14. 14)
      • 2. Clerc, A.J, Muetze, A.: ‘Measurement of stator core magnetic degradation during the manufacturing process’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 13441352.
    15. 15)
      • 17. Fiorillo, F.: ‘Measurement and characterization of magnetic materials’ (Elsevier Academic Press, London, England, 2005).
    16. 16)
      • 7. Cossale, M., Krings, A., Soulard, J., et al: ‘Practical investigations on cobalt-iron laminations for electrical machines’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 29332939.
    17. 17)
      • 14. Krings, A.: ‘Iron losses in electrical machines – influence of material properties, manufacturing processes, and inverter operation’. PhD Thesis, KTH Royal Inst. Tech., Stockholm, Sweden, 2014.
    18. 18)
      • 13. IEC60404-2: ‘Magnetic materials – part 2: methods of measurement of the magnetic properties of electrical steel sheet and strip by means of an Epstein frame’, 2008.
    19. 19)
      • 4. Stupakov, O., Wood, R., Melikhov, Y., et al: ‘Measurement of electrical steels with direct field determination’, IEEE Trans. Magn., 2010, 46, (2), pp. 298301.
    20. 20)
      • 6. Imamori, S., Steentjes, S., Hameyer, K.: ‘Influence of interlocking on magnetic properties of electrical steel laminations’, IEEE Trans. Magn., 2017, 53, (11), pp. 14.
    21. 21)
      • 9. Alatawneh, N., Rahman, T., Hussain, S., et al: ‘Accuracy of time domain extension formulae of core losses in non-oriented electrical steel laminations under non-sinusoidal excitation’, IET Electr. Power Appl., 2017, 11, (6), pp. 11311139.
    22. 22)
      • 20. Lee, B.-H., Kwon, S.-O., Sun, T., et al: ‘Modeling of core loss resistance for d-q equivalent circuit analysis of IPMSM considering harmonic linkage flux’, IEEE Trans. Magn., 2011, 47, (5), pp. 10661069.
    23. 23)
      • 24. Lim, M.S., Kim, J.H., Hong, J.P.: ‘Experimental characterization of the slinky-laminated core and iron loss analysis of electrical machine’, IEEE Trans. Magn., 2015, 51, (11).
    24. 24)
      • 8. Xue, S., Chu, W.Q., Zhu, Z.Q., et al: ‘Iron loss calculation considering temperature influence in non-oriented steel laminations’, IET Sci. Meas. Technol., 2016, 10, (8), pp. 846854.
    25. 25)
      • 1. Akiror, J.C., Pillay, P., Merkhouf, A.: ‘Challenges in modeling of large synchronous machines’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 16521662.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5382
Loading

Related content

content/journals/10.1049/iet-epa.2018.5382
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading