access icon free Direct voltage control of stand-alone DFIG under asymmetric loads based on non-singular terminal sliding mode control and improved extended state observer

This study investigates direct voltage control of stand-alone doubly-fed induction generator (DFIG) system subject to asymmetric loads. An improved voltage regulator is designed based on non-singular terminal sliding mode control and an improved extended state observer (ESO). Due to the salient features of the improved ESO, the rotor current transducer is not required and the sinusoidal fluctuation in the sliding surface caused by asymmetric loads is eliminated. As a result, satisfactory balanced stator voltage can be generated under asymmetric loads. The proposed method is characterised by the rapid dynamic response and the elimination of sequence decomposition operations. Finally, the proposed method is applied to a 6 kW DFIG-based hardware system under various loads and varying speed conditions. Both simulation and experiment results are given to validate the effectiveness and robustness of the proposed method for stand-alone DFIG system.

Inspec keywords: asynchronous generators; variable structure systems; stators; power generation control; observers; rotors; voltage control; dynamic response

Other keywords: nonsingular terminal sliding mode control; improved voltage regulator; direct voltage control; asymmetric loads; improved ESO; balanced stator voltage; varying speed conditions; stand-alone DFIG system; induction generator system; improved extended state observer; DFIG-based hardware system; sliding surface

Subjects: Multivariable control systems; Voltage control; Simulation, modelling and identification; Asynchronous machines; Control of electric power systems; Control system analysis and synthesis methods

References

    1. 1)
      • 2. Muller, S., Deicke, M., Doncker, R.W.D.: ‘Doubly fed induction generator systems for wind turbines’, IEEE Ind. Appl. Mag., 2002, 8, (3), pp. 2633.
    2. 2)
      • 7. Iwanski, G., Koczara, W.: ‘Sensorless direct voltage control of the stand-alone slip-ring induction generator’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 12371239.
    3. 3)
      • 21. Song, Z.F., Xia, C.L., Liu, T.: ‘Predictive current control of three-phase grid-connected converters with constant switching frequency for wind energy systems’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24512464.
    4. 4)
      • 12. Phan, V.-T., Nguyen, D.-T., Trinh, Q.-N.: ‘Harmonics rejection in stand-alone doubly-fed induction generators with non-linear loads’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 815817.
    5. 5)
      • 5. Wang, X.H., Sun, D., Zhu, Z. Q.: ‘Resonant-based backstepping direct power control strategy for DFIG under both balanced and unbalanced grid conditions’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 48214830.
    6. 6)
      • 6. Pena, R., Cardenas, R., Escobar, E.: ‘Control strategy for a doubly fed induction generator feeding an unbalanced grid or stand-alone load’, Electr. Power Syst. Res., 2009, 79, (2), pp. 355364.
    7. 7)
      • 1. Pena, R., Clare, J.C., Asher, G.M.: ‘Double fed induction generator using back-to-back PWM converter and its application to variable-speed wind energy generation’, IEEE Proc. Electr. Power Appl., 1996, 143, (3), pp. 231241.
    8. 8)
      • 19. Pedro, V., Marques, G.D.: ‘DC voltage control and stability analysis of PWM-voltage-type reversible rectifier’, IEEE Trans. Ind. Electron., 1998, 45, (2), pp. 263273.
    9. 9)
      • 16. Chen, S. Z., Cheung, N. C., Zhang, Y.: ‘Improved grid synchronization control of doubly fed induction generator under unbalanced grid voltage’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 799810.
    10. 10)
      • 9. Li, X., Sun, Y., Su, M., et al: ‘Coordinated control for unbalanced operation of stand-alone doubly fed induction generator’, Wind Energy, 2014, 17, pp. 317336.
    11. 11)
      • 18. Chang, X., Liu, L., Ding, W., et al: ‘Novel non-singular fast terminal sliding mode control for a PMSM chaotic system with extended state observer and tracking differentiator’, J. Vib. Control, 2017, 23, (15), pp. 24782493.
    12. 12)
      • 8. Phan, V.-T., Lee, H.-H.: ‘Enhanced proportional-resonant current controller for unbalanced stand-alone DFIG-based wind turbines’, J. Electr. Eng. Technol., 2010, 5, (3), pp. 443450.
    13. 13)
      • 13. Nian, H., Wang, T., Zhu, Z. Q.: ‘Voltage imbalance compensation for doubly fed induction generator using direct resonant feedback regulator’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 614426.
    14. 14)
      • 23. Hao, L., Wang, X., Blaabjerg, F., et al: ‘Impedance analysis of SOGI-FLL-based grid synchronization’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 74097413.
    15. 15)
      • 10. Phan, V.-T., Lee, H.-H., Chun, T.-W.: ‘An improved control strategy using a PI-resonant controller for an unbalanced stand-alone doubly-fed induction generator’, J. Power Electron., 2010, 10, (2), pp. 194202.
    16. 16)
      • 17. Patnaik, R. K., Dash, P. K., Mahapatra, K.: ‘Adaptive terminal sliding mode power control of DFIG based wind energy conversion system for stability enhancement’, Int. Trans. Electr. Energy Syst., 2016, 26, (4), pp. 750782.
    17. 17)
      • 4. Abad, G., Rodríguez, M.Á., Iwanski, G., et al: ‘Direct power control of doubly-fed-induction-generator-based wind turbines under unbalanced grid voltage’, IEEE Trans. Power Electron., 2010, 25, (2), pp. 442452.
    18. 18)
      • 15. Chen, S. Z., Cheung, N. C., Wong, K. C.: ‘Grid synchronization of doubly-fed induction generator using integral variable structure control’, IEEE Trans. Energy Convers., 2009, 24, (4), pp. 875883.
    19. 19)
      • 24. Ghijselen, J.A.L., Van den Bossche, A.P.M.: ‘Exact voltage unbalance assessment without phase measurements’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 519520.
    20. 20)
      • 11. Phan, V.-T., Lee, H.–H.: ‘Performance enhancement of stand-alone DFIG systems with control of rotor and load side converters using resonant controllers’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 199210.
    21. 21)
      • 3. Sun, D., Wang, X.H., Nian, H., et al: ‘A sliding-mode direct power control strategy for DFIG under both balanced and unbalanced grid conditions using extended active power’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 13131322.
    22. 22)
      • 14. Nian, H., Wu, C., Cheng, P.: ‘Direct resonant control strategy for torque ripple mitigation of DFIG connected to DC link through diode rectifier on stator’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 614626.
    23. 23)
      • 20. Dong, J., Li, S., Wu, S., et al: ‘Nonlinear observer-based robust passive control of doubly-fed induction generators for power system stability enhancement via energy reshaping’, Energies, 2017, 10, (8), p. 1082.
    24. 24)
      • 22. Feng, Y., Yu, X., Man, Z.: ‘Non-singular terminal sliding mode control for rigid manipulators’, Automatica, 2002, 38, pp. 21592167.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5368
Loading

Related content

content/journals/10.1049/iet-epa.2018.5368
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading