Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analytical design of the integrated motor used in a hubless rim-driven propulsor

The rim-driven integrated motor propulsor (IMP) has received much attention in recent years, owing to its superiority in flexibility, reliability, and space occupation. For this propulsion system, radially thin motors with high torque and large air gaps are essential. Two-segment Halbach array permanent magnets with unequal segment-arc are adopted to enable a thin rotor and a large air gap. The general analytical solution of the magnetic field is presented. Based on the analytical calculation of the Halbach motor performance, the necessity of the rotor core was discussed, and the Halbach array was optimised with an analytical method to maximise the electromagnetic torque. This study also tried and compared three designs of the integrated motor stator to further reduce the radial thickness, and the slotted stator proved more reasonable. The fabrication of an IMP prototype was completed, and the experimental data of the integrated motor are presented and compared with the calculated results. This study also conducted the water tunnel experiment of the IMP prototype to test the integrated motor performance in the overall IMP system. The measured rotational speed and output thrust are less than expected, so the friction loss in the IMP gap flow field is calculated and analysed.

References

    1. 1)
      • 20. Xia, Z.P., Zhu, Z.Q., Howe, D.: ‘Analytical magnetic field analysis of halbach magnetized permanent-magnet machines’, IEEE Trans. Magn., 2004, 40, (4), pp. 18641872.
    2. 2)
      • 16. Hassannia, A., Darabi, A.: ‘Design and performance analysis of superconducting rim-driven synchronous motors for marine propulsion’, IEEE Trans. Appl. Supercond., 2014, 24, (1), pp. 4046.
    3. 3)
      • 12. Krøvel, Ø.: ‘Design of large permanent magnetized synchronous electricmachines’. PhD thesis, Dept. Elect. Pow. Eng., Norwegian Univ. Sci. Tech., 2011.
    4. 4)
      • 2. Brown, D.W., Repp, J.R., Taylor, O.S.: ‘Submersible outboard electric motor/propulsor’, Nav. Eng. J., 1989, 101, (5), pp. 4452.
    5. 5)
      • 22. Hanselman, D.C.: ‘Brushless permanent magnet motor design’ (Magna Physics Publishing, Lebanon, Ohio, 2006, 2nd edn.).
    6. 6)
      • 14. Shen, Y., Hu, P., Jin, S., et al: ‘Design of novel shaftless pump-Jet propulsor for multi-purpose long-range and high-speed autonomous underwater vehicle’, IEEE Trans. Magn., 2016, 52, (7), pp. 14.
    7. 7)
      • 21. Shen, Y., Zhu, Z.Q.: ‘General analytical model for calculating electromagnetic performance of permanent magnet brushless machines having segmented Halbach array’, IET Electr. Syst. Transp., 2013, 3, (3), pp. 5766.
    8. 8)
      • 5. Yakovlev, A.Y., Sokolov, M.A., Marinich, N.V.: ‘Numerical design and experimental verification of a rim-driven thruster’. Proc. 2nd Int. Symp. Marine Propulsors, Hamburg, Germany, 2011.
    9. 9)
      • 3. Lea, M., Thompson, D., Van Blarcom, B., et al: ‘Scale model testing of a commercial rim driven propulsor pod’, J. Ship Prod., 2004, 19, (2), pp. 121130.
    10. 10)
      • 18. Tuohy, P.M., Smith, A.C., Husband, M., et al: ‘Rim-drive marine thruster using a multiple-can induction motor’, IET Electr. Power Appl., 2013, 7, (7), pp. 557565.
    11. 11)
      • 9. Lai, S.H., Sharkh, S.M.: ‘Structurally integrated slotless PM brushless motor with spiral wound laminations for marine thrusters’. Proc. 3rd Int. Conf. Power Electron. Mach. Drives, Dublin, 2006, pp. 106110.
    12. 12)
      • 7. Hsieh, M.F., Chen, J.H., Yeh, Y.H., et al: ‘Integrated design and realization of a hubless rim-driven thruster’. Proc. IEEE 33rd Annu. Conf. IECON, Taipei, November 2007, pp. 30333038.
    13. 13)
      • 17. Tuohy, P.M., Smith, A.C., Husband, M.: ‘Induction rim-drive for a marine propulsor’. Proc. IET Int. Conf. Power Electron., Machines and Drives, Brighton, U.K., 2010, pp. 16.
    14. 14)
      • 4. Kim, K., Turnock, S.R., Ando, J., et al: ‘The propulsion committee: final report and recommendations to the 25th ITTC’. Proc. Int. Towing Tank Conf., Fukuoka, Japan, 2008, pp. 115121.
    15. 15)
      • 10. Liang, J.H., Zhang, X.F., Qiao, M.Z., et al: ‘Optimal design and multifield coupling analysis of propelling motor used in a novel integrated motor propeller’, IEEE Trans. Magn., 2013, 49, (12), pp. 57425748.
    16. 16)
      • 1. Pan, G., Lu, L.: ‘Numerical simulation of steady hydrodynamic performance for integrated motor propulsor on CFD’. Proc. Int. Conf. Virtual Real. Vis., Xi'an, China, 2013, pp. 1520.
    17. 17)
      • 6. Cao, Q.M., Hong, F.W., Tang, D.H., et al: ‘Prediction of loading distribution and hydrodynamic measurements for propeller blades in a rim driven thruster’, J. Hydrodyn., 2012, 24, (1), pp. 5057.
    18. 18)
      • 15. Li, J., Chau, K.T.: ‘A novel HTS PM vernier motor for direct-drive propulsion’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 11751179.
    19. 19)
      • 19. Richardson, K.M., Pollock, C., Flower, J.O.: ‘Design of a switched reluctance motor for an integrated motor/propeller unit’. Proc. IEE 7th Int. Conf. Elect. Mach. Drives, Durham, NC, September 1995, pp. 271275.
    20. 20)
      • 13. Sharkh, S.M., Lai, S.H., Turnock, S.R.: ‘A structurally integrated brushless PM motor for miniature propeller thrusters’, IEE Proc. Electr. Power Appl., 2004, 151, (5), pp. 513519.
    21. 21)
      • 11. Krøvel, Ø., Nilssen, R., Skaar, S.E., et al: ‘Design of an integrated 100 kW permanent magnet synchronous machine in a prototype thruster for ship propulsion’. Proc. Int. Conf. Elect. Mach., Cracow, Poland, 2004, pp. 117123.
    22. 22)
      • 8. Sharkh, S.M., Lai, S.H.: ‘Slotless PM brushless motor with helical edge-wound laminations’, IEEE Trans. Energy Conv., 2009, 24, (3), pp. 594598.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5303
Loading

Related content

content/journals/10.1049/iet-epa.2018.5303
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address