access icon free Design of slit width to improve space harmonic distribution in a slit stator motor

This article designs the width of slit-like flux barriers to improve the space harmonic distribution of the air-gap flux density in a slit stator motor. The slit stator motor has slit-like flux barriers at wound teeth of the stator. The stator design can adjust the space harmonic distribution with the slit width. Space harmonic distributions govern torque and losses in motors. For this reason, the dependence of the space harmonic distribution on the slit width should be clarified to design slit stator motors. The dependence is investigated through a theoretical calculation based on a magnetic circuit model and a finite element method analysis. These methods show that a space harmonic producing the drive torque is maximised at a slit width and other dominant detrimental space harmonics are decreased with the increase of the slit width. The improved space harmonic distribution is verified by performing an experiment with a measuring rotor.

Inspec keywords: rotors; air gaps; stators; torque; magnetic flux; magnetic circuits; finite element analysis

Other keywords: motor loss; slit width design; magnetic circuit model; drive torque; slit stator motor; FEM analysis; wound teeth; measuring rotor; slit-like flux barriers; finite element method analysis; space harmonic distribution govern torque; air-gap flux density

Subjects: Other electromagnetic device applications; Finite element analysis; a.c. machines; d.c. machines

References

    1. 1)
      • 12. Bianchi, N., Alberti, L., Barcaro, M.: ‘Design and tests of a four-layer fractional-slot interior permanent-magnet motor’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 22342240.
    2. 2)
      • 14. Cheng, S.P., Hwang, C.C.: ‘Design of high-performance spindle motors with single-layer concentrated windings and unequal tooth widths’, IEEE Trans. Magn., 2007, 43, (2), pp. 802804.
    3. 3)
      • 3. Bianchi, N., Bolognani, S., Fornasiero, E.: ‘An overview of rotor losses determination in three-phase fractional-slot PM machines’, IEEE Trans. Ind. Appl., 2010, 46, (6), pp. 23382345.
    4. 4)
      • 1. Ishak, D., Zhu, Z.Q., Howe, D.: ‘Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole’, IEEE Trans. Magn., 2005, 41, (9), pp. 24622469.
    5. 5)
      • 4. Li, J., Choi, D. W., Son, D.H., et al: ‘Effects of MMF harmonics on rotor eddy-current losses for inner-rotor fractional slot axial flux permanent magnet synchronous machines’, IEEE Trans. Magn., 2012, 48, (2), pp. 839842.
    6. 6)
      • 10. Alberti, L., Barcaro, M., Bianchi, N.: ‘Design of a low-torque-ripple fractional-slot interior permanent-magnet motor’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 18011808.
    7. 7)
      • 18. Yokoi, Y., Higuchi, T.: ‘Design analysis of slit stator motors’. Proc. ICEMS, Chiba, Japan, Nov. 2016.
    8. 8)
      • 8. Cistelecan, M.V., Ferreira, F.J.T.E., Popescu, M.: ‘Three phase tooth-concentrated multiple-layer fractional windings with low space harmonic content’. Proc. IEEE ECCE, Atlanta, GA, USA, Sep. 2010, pp. 13991405.
    9. 9)
      • 7. Ito, K., Naka, K., Nakano, M., et al: ‘Electric machine’. U.S. Patent 7,605,514 B2, 2009.
    10. 10)
      • 19. Yokoi, Y., Higuchi, T.: ‘Stator slitting of 12-slot 10-pole concentrated winding motors’, IEEE Trans. Ind. Appl., 2018, 54, (5), pp. 43774385.
    11. 11)
      • 6. Kometani, H., Asao, Y., Adachi, K.: ‘Dynamo-electric machine’. U.S. Patent 6,166,471, 2000.
    12. 12)
      • 16. Dajaku, G., Xie, W., Gerling, D.: ‘Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design’, IEEE Trans. Magn., 2014, 50, (5), 8201012.
    13. 13)
      • 9. Alberti, L., Bianchi, N.: ‘Theory and design of fractional-slot multilayer windings’, IEEE Trans. Ind. Appl., 2013, 49, (2), pp. 841849.
    14. 14)
      • 11. Sun, A., Li, J., Qu, R., et al: ‘Effect of multilayer windings on rotor losses of interior permanent magnet generator with fractional-slot concentrated-windings’, IEEE Trans. Magn., 2014, 50, (11), 8105404.
    15. 15)
      • 5. Fornasiero, E., Bianchi, N., Bolognani, S.: ‘Slot harmonic impact on rotor losses in fractional-slot permanent-magnet machines’, IEEE Trans. Ind. Electr., 2012, 59, (6), pp. 25572564.
    16. 16)
      • 2. Bianchi, N., Fornasiero, E.: ‘Index of rotor losses in three-phase fractional-slot permanent magnet machines’, IET Electr. Power Appl., 2009, 3, (5), pp. 381388.
    17. 17)
      • 15. Dajaku, G., Gerling, D.: ‘Low costs and high-efficiency electric machines’. Proc. EDPC, Nuremberg, Germany, Oct. 2012.
    18. 18)
      • 13. Ishak, D., Zhu, Z.Q., Howe, D.: ‘Permanent-magnet brushless machines with unequal tooth widths and similar slot and pole numbers’, IEEE Trans. Ind. Appl., 2005, 41, (2), pp. 584590.
    19. 19)
      • 20. Yokoi, Y., Hashizume, R., Higuchi, T.: ‘Design of slit-like flux barriers to improve space harmonic distribution in a slit stator motor’. Digest of INTERMAG, Singapore, Apr. 2018, pp. 213214.
    20. 20)
      • 17. Li, G.J., Zhu, Z.Q., Foster, M., et al: ‘Comparative studies of modular and unequal tooth PM machines either with or without tooth tips’, IEEE Trans. Magn., 2014, 50, (7), 8101610.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5289
Loading

Related content

content/journals/10.1049/iet-epa.2018.5289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading