Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Decoupling start control method for aircraft wound-rotor synchronous starter-generator based on main field current estimation

Wound-rotor synchronous starter-generator (WRSSG) has the advantages of less volume and weight, high safety and low cost in maintenance, so it is becoming increasingly popular in modern aircraft, especially for more-electric aircraft. The main machine (MM) and main exciter (ME) of the aircraft WRSSG are electromechanically coupled seriously, which makes the start control for the WRSSG complex in the starting mode. In this study, a decoupling start control method for aircraft WRSSG based on main field current estimation is proposed to solve the serious coupling problem and improve start control performance. In the proposed decoupling control method, the main field current is estimated first and used in the closed-loop excitation control for the ME to make the main field current meet the MM demand. With the desired field current, the MM is decoupled with the ME and controlled like a traditional synchronous motor to start the aircraft engine under maximum torque per ampere. The feasibility and effectiveness of the proposed decoupling control method is verified by experimental results.

References

    1. 1)
      • 25. Jatskevich, J., Pekarek, S.D., Davoudi, A.: ‘Fast procedure for constructing an accurate dynamic average-value model of synchronous machine-rectifier systems’, IEEE Trans. Energy Convers., 2006, 21, (2), pp. 435441.
    2. 2)
      • 18. Wei, J.D., Shi, M.M., Wu, T.G., et al: ‘Sensorless control strategy of brushless synchronous machine in start mode’, Electr. Mach. Control, 2014, 18, (9), pp. 6067.
    3. 3)
      • 22. Jadric, I., Borojevic, D., Jadric, M.: ‘Modeling and control of a synchronous generator with an active DC load’, IEEE Trans. Power Electron., 2000, 15, (2), pp. 303311.
    4. 4)
      • 23. Jiao, N., Liu, W., Zhang, Z., et al: ‘Field current estimation for wound-rotor synchronous starter/generator with asynchronous brushless exciters’, IEEE Trans. Energy Convers., 2017, 32, (4), pp. 15541561.
    5. 5)
      • 2. Friedrich, G., Girardin, A.: ‘Integrated starter generator’, IEEE Ind. Appl. Mag., 2009, 15, (4), pp. 2634.
    6. 6)
      • 26. Jiao, N., Liu, W., Zhang, Z., et al: ‘Field current estimation for wound-rotor synchronous starter-generator with asynchronous brushless exciters’, IEEE Trans. Energy Convers., 2017, 32, (4), pp. 15541561.
    7. 7)
      • 27. Kjaer, P.C., Kjellqvist, T., Delaloye, C.: ‘Estimation of field current in vector-controlled synchronous machine variable-speed drives employing brushless asynchronous exciters’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 834840.
    8. 8)
      • 16. Griffo, A., Drury, D., Sawata, T., et al: ‘Sensorless starting of a wound-field synchronous starter/generator for aerospace applications’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 35793587.
    9. 9)
      • 20. Ma, P., Liu, W., Mao, S., et al: ‘Torque ripple reduction in three-stage brushless synchronous motor based on α-β-γ filter’. 2014 17th Int. Conf. on Electrical Machines and Systems (ICEMS), Hangzhou, China, October 2014, pp. 815815.
    10. 10)
      • 14. Shahnazari, M., Vahedi, A.: ‘Improved dynamic average modelling of brushless excitation system in all rectification modes’, IET Electr. Power Appl., 2010, 4, (8), pp. 657669.
    11. 11)
      • 1. Sarlioglu, B., Morris, C.T.: ‘More electric aircraft: review, challenges, and opportunities for commercial transport aircraft’, IEEE Trans. Transp. Electrification, 2015, 1, (1), pp. 5464.
    12. 12)
      • 9. Wei, J., Zheng, Q., Shi, M., et al: ‘The excitation control strategy of the three-stage synchronous machine in the start mode’. 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Fort Worth, USA, March 2014, pp. 24692474.
    13. 13)
      • 3. Bhangu, B.S., Rajashekara, K.: ‘Electric starter generators: their integration into gas turbine engines’, IEEE Ind. Appl. Mag., 2014, 20, (2), pp. 1422.
    14. 14)
      • 12. Zhang, Z., Liu, W., Zhao, D., et al: ‘Steady-state performance evaluations of three-phase brushless asynchronous excitation system for aircraft starter/generator’, IET Electr. Power Appl., 2016, 10, (8), pp. 788798.
    15. 15)
      • 4. Zhang, Z., Liu, Y., Li, J.: ‘A HESM-based variable frequency AC starter-generator system for aircraft applications’, IEEE Trans. Energy Convers., 2018(Early Access), DOI.10.1109/TEC.2018.2867906.
    16. 16)
      • 24. Jatskevich, J., Pekarek, S.D., Davoudi, A.: ‘Parametric average-value model of synchronous machine-rectifier systems’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 918.
    17. 17)
      • 13. Aliprantis, D.C., Sudhoff, S.D., Kuhn, B.T.: ‘A brushless exciter model incorporating multiple rectifier modes and Preisach's hysteresis theory’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 136147.
    18. 18)
      • 21. Jiao, N., Liu, W., Meng, T., et al: ‘Decoupling control for aircraft brushless wound-rotor synchronous starter-generator in the starting mode’. 4th Int. Symp. on More Electric Aircraft Technology (MEA 2017), Beijing, China, November 2017, pp. 17.
    19. 19)
      • 28. Reed, D.M., Hofmann, H.F.: ‘Direct field-oriented control of an induction machine using an adaptive rotor resistance estimator’. 2010 IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, USA, September 2010, pp. 11581165.
    20. 20)
      • 8. Jiao, N., Liu, W., Meng, T., et al: ‘Design and control of a two-phase brushless exciter for aircraft wound-rotor synchronous starter/generator in the starting mode’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 44524461.
    21. 21)
      • 11. Li, J., Zhang, Z., Lu, J., et al: ‘Investigation and analysis of a new shaded-pole main exciter for aircraft starter–generator’, IEEE Trans. Magn., 2017, 53, (11), pp. 14.
    22. 22)
      • 6. Williams, R.H., Foster, M.P., Stone, D.A., et al: ‘Utilizing existing aircraft wound field generators for starter-generators’. 2011 IEEE 8th Int. Conf. on Power Electronics and ECCE Asia (ICPE & ECCE), Jeju, South Korea, May-June 2011, pp. 691696.
    23. 23)
      • 15. Zhang, Z., Liu, W., Peng, J., et al: ‘Identification of TBAES rotating diode failure’, IET Electr. Power Appl., 2017, 11, (2), pp. 260271.
    24. 24)
      • 7. Jiao, N., Liu, W., Meng, T., et al: ‘Detailed excitation control methods for two-phase brushless exciter of the wound-rotor synchronous starter/generator in the starting mode’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 115123.
    25. 25)
      • 5. Griffo, A., Wrobel, R., Mellor, P.H., et al: ‘Design and characterization of a three-phase brushless exciter for aircraft starter/generator’, IEEE Trans. Ind. Appl., 2013, 49, (5), pp. 21062115.
    26. 26)
      • 17. Maalouf, A., Idkhajine, L., Le Ballois, S., et al: ‘Field programmable gate array-based sensorless control of a brushless synchronous starter generator for aircraft application’, IET Electr. Power Appl., 2011, 5, (1), pp. 181192.
    27. 27)
      • 19. Ma, P., Liu, W.G., Luo, G.Z., et al: ‘Starting control strategy for three-stage aviation brushless synchronous motor’, Electr. Mach. Control, 2012, 110, (Suppl S4), pp. 8084.
    28. 28)
      • 10. Li, J., Zhang, Z., Lu, J., et al: ‘Design and characterization of a single-phase main exciter for aircraft wound-rotor synchronous starter-generator’, IEEE Trans. Magn., 2018, 54, (11), pp. 8206805.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5140
Loading

Related content

content/journals/10.1049/iet-epa.2018.5140
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address