access icon free Magnetic field analysis and optimisation of permanent magnet machines with novel two-segment Halbach array

An analytical technique for predicting and optimising the open-circuit magnetic field in brushless surface-mounted permanent magnet (PM) machines with novel two-segment Halbach array has been presented. For the maximum fundamental air-gap flux density, the optimal magnetisation angle has been analytically derived. The effect of the rotor core on the fundamental air-gap flux density in the machine has been investigated. In addition, the proposed analytical technique can also predict the induced back-electromotive force and the electromagnetic torque. The analytical results show that the electromagnetic performance can be significantly improved for the proposed two-segment Halbach array compared with the conventional two-segment Halbach array. Predicted results have been validated by the finite-element analyses for 9-slot/8-pole slotless/slotted brushless PM machines.

Inspec keywords: permanent magnets; electric potential; finite element analysis; permanent magnet motors; rotors; magnetisation; brushless machines; permanent magnet machines; machine theory; torque; magnetic fields

Other keywords: brushless surface-mounted permanent magnet machines; optimisation; analytical results; brushless PM machines; open-circuit magnetic field; two-segment Halbach array; analytical technique; maximum fundamental air-gap flux density

Subjects: a.c. machines; d.c. machines; Finite element analysis; Magnetization curves, hysteresis, Barkhausen and related effects

References

    1. 1)
      • 17. Rahideh, A., Korakianitis, T.: ‘Analytical magnetic field distribution of slotless brushless machines with inset permanent magnets’, IEEE Trans. Magn., 2011, 47, (6), pp. 17631774.
    2. 2)
      • 5. Rahideh, A., Korakianitis, T.: ‘Analytical magnetic field distribution of slotless brushless PM motors – part 1: armature reaction field, inductance and rotor eddy current loss calculations’, IET Electr. Power Appl., 2012, 6, (9), pp. 628638.
    3. 3)
      • 20. Shen, Y., Liu, G.Y.: ‘Determination of maximum electromagnetic torque in PM brushless machines having two-segment Halbach array’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 718729.
    4. 4)
      • 16. Laldin, O., Sudhoff, S.D., Pekarek, S.: ‘Modified Carter's coefficient’, IEEE Trans. Magn., 2015, 30, (3), pp. 11331134.
    5. 5)
      • 15. Wu, L.J., Zhu, Z.Q., Staton, D., et al: ‘An improved subdomain model for predicting magnetic of surface-mounted permanent magnet machines accounting for tooth-tips’, IEEE Trans. Magn., 2011, 47, (6), pp. 16931704.
    6. 6)
      • 12. Wu, L.J., Zhu, Z.Q., Staton, D.A., et al: ‘Comparison of analytical models of cogging torque in surface-mounted PM machines’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 24142425.
    7. 7)
      • 4. Zhu, Z.Q., Howe, D.: ‘Instantaneous magnetic field distribution in brushless permanent magnet dc motors, part I: open-circuit field’, IEEE Trans. Magn., 1993, 29, (1), pp. 124134.
    8. 8)
      • 3. Hsieh, M., Hsu, Y.: ‘A generalized magnetic circuit modeling approach for design of surface permanent-magnet machines’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 779792.
    9. 9)
      • 21. Hughes, A., Miller, T.J.E.: ‘Analysis of fields and inductances in air-cored and iron-cored synchronous machines’, Proc. IEE, 1977, 124, (2), pp. 121126.
    10. 10)
      • 7. Shen, Y., Zhu, Z.Q.: ‘General analytical model for calculating electromagnetic performance of permanent magnet brushless machines having segmented Halbach array’, IET Electr. Syst. Transp., 2013, 3, (3), pp. 5766.
    11. 11)
      • 10. Cheng, W.J., Sun, Y.H.: ‘Analytical solution to magnetic field distribution of a parallel magnetized rotor with cylindrical or ring-type permanent magnet’, IET Electr. Power Appl., 2015, 9, (6), pp. 429437.
    12. 12)
      • 1. Zhu, Z.Q., Chan, C.C.: ‘Electrical machine topologies and technologies for electric, hybrid, and fuel cell vehicles’. IEEE Vehicle Power and Propulsion Conf., Harbin, People's Republic of China, 2008, pp. 16.
    13. 13)
      • 8. Shen, Y., Zhu, Z.Q.: ‘Investigation of permanent magnet brushless machines having unequal-magnet height Pole’, IEEE Trans. Magn., 2012, 48, (12), pp. 48154829.
    14. 14)
      • 19. Xia, Z.P., Zhu, Z.Q.: ‘Analytical magnetic field analysis of Halbach magnetized permanent-magnet machines’, IEEE Trans. Magn., 2004, 40, (4), pp. 18641872.
    15. 15)
      • 13. Lubin, T., Mezani, S.: ‘2-D exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots’, IEEE Trans. Magn., 2011, 47, (2), pp. 479492.
    16. 16)
      • 11. Zhu, Z.Q., Howe, D.: ‘Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines’, IEEE Trans. Magn., 2002, 38, (1), pp. 229238.
    17. 17)
      • 2. Sizov, G.Y., Ionel, D.M., Demerdash, N.A.O.: ‘Modeling and parametric design of permanent-magnet ac machines using computationally efficient finite-element analysis’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 24032413.
    18. 18)
      • 18. Zhu, Z.Q., Howe, D.: ‘Prediction of open-circuit airgap field distribution in brushless machines having an inset permanent magnet rotor topology’, IEEE Trans. Magn., 1994, 30, (1), pp. 98107.
    19. 19)
      • 9. Shen, Y., Zhu, Z.Q.: ‘Analysis of electromagnetic performance of Halbach PM brushless machines having mixed grade and unequal heigth of magnets’, IEEE Trans. Magn., 2013, 49, (4), pp. 14611469.
    20. 20)
      • 6. Rahideh, A., Korakianitis, T.: ‘Analytical magnetic field distribution of slotless brushless PM motors. Part 2: open-circuit field and torque calculations’, IET Electr. Power Appl., 2012, 6, (9), pp. 639651.
    21. 21)
      • 14. Tiang, T.L., Ishak, D., Lim, C.P., et al: ‘A comprehensive analytical subdomain model and its field solutions for surface-mounted permanent magnet machines’, IEEE Trans. Magn., 2015, 51, (4), pp.1-14, Art. no. 8104314.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5062
Loading

Related content

content/journals/10.1049/iet-epa.2018.5062
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading