Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and analysis of a new HTS modular flux-switching linear machine for rail transit

This study proposes a new high-temperature superconductor (HTS) modular flux-switching linear machine for rail transit, in which the armature windings and HTS field windings are placed on the short mover, while the long stator is only made of segmented low-cost iron. The key is to adopt a modular mover consisting of three separate phase modules whose positions are mutually 120° electrical degrees apart to greatly offset the cogging force for suppressing the thrust force ripple, accompanied with the features of high-fault tolerance. Also, the HTS excitation can produce stronger magnetic field than permanent magnet excitation to obtain a high force density; meanwhile, it easily regulates the air-gap flux density for achieving flexible high-speed constant-power operation. The operation principle and general design method of the proposed machine with concerning the HTS-excitation pattern are described in details. By using the finite element analysis, the machine performances are comparatively analysed with its counterpart without using modular mover to verify its validity. The results show that the proposed machine can offer more sinusoidal back electromotive force, better fault tolerance, higher thrust force and smaller force ripple.

References

    1. 1)
      • 18. Wang, Y.B., Chen, M., Ching, T.W., et al: ‘Design and analysis of a new HTS axial-field flux-switching machine’, IEEE Trans. Appl. Supercond., 2015, 25, (3), p. 5200905.
    2. 2)
      • 16. Cao, R., Huang, W.: ‘A double fed three-phase flux-switching linear motor with complementary magnet circuit for urban rail transit’. Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conf. Expo, Beijing, China, September 2014, pp. 15.
    3. 3)
      • 26. Hua, W., Zhang, G., Cheng, M.: ‘Flux-regulation theories and principles of hybrid-excited flux-switching machines’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 53595369.
    4. 4)
      • 17. Wang, Y.B., Sun, J.X., Zou, Z.X., et al: ‘Design and analysis of a HTS flux-switching machine for wind energy conversion’, IEEE Trans. Appl. Supercond., 2013, 23, (3), p. 5000904.
    5. 5)
      • 4. Carpita, M., Beltrami, T., Besson, C., et al: ‘Multiphase active way linear motor: proof-of-concept prototype’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 21782188.
    6. 6)
      • 2. Suzuki, K., Kim, Y.J., Dohmeki, H.: ‘Driving method of permanent-magnet linear synchronous motor with the stationary discontinuous armature for long-distance transportation system’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 22272235.
    7. 7)
      • 8. Cao, R., Cheng, M., Hua, W., et al: ‘A new primary permanent magnet linear motor for urban rail transit’. Proc. ICEMS2010, Incheon, Korea, October 2010, pp. 15281532.
    8. 8)
      • 14. Cao, R., Cheng, M., Mi, C., et al: ‘Modeling of a complementary and modular linear flux-switching permanent magnet motor for urban rail transit applications’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 489497.
    9. 9)
      • 20. Li, X., Liu, S., Wang, Y.: ‘Design and analysis of a stator HTS field-modulated machine for direct-drive applications’, IEEE Trans. Appl. Supercond., 2017, 27, (4), p. 5201005.
    10. 10)
      • 15. Cao, R., Cheng, M., Mi, C., et al: ‘Influence of leading design parameters on the force performance of a complementary and modular linear flux-switching permanent magnet motor’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 21652175.
    11. 11)
      • 23. Xiang, Z., Zhu, X., Quan, L., et al: ‘Multilevel design optimization and operation of a brushless double mechanical port flux-switching permanent-magnet motor’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 60426054.
    12. 12)
      • 25. Jin, M., Wang, C., Shen, J., et al: ‘A modular permanent-magnet flux-switching linear machine with fault-tolerant capability’, IEEE Trans. Magn., 2009, 45, (8), pp. 31793186.
    13. 13)
      • 12. Zhao, W., Ji, J., Liu, G., et al: ‘Design and analysis of a new modular linear flux-reversal permanent-magnet motor’, IEEE Trans. Appl. Supercond., 2014, 24, (3), p. 5200305.
    14. 14)
      • 3. Yoon, S., Hur, J., Hyun, D.: ‘A method of optimal design of single-sided linear induction motor for transit’, IEEE Trans. Magn., 1997, 33, (5), pp. 42154217.
    15. 15)
      • 22. Zhu, X., Xiang, Z., Zhang, C., et al: ‘Co-reduction of torque ripple for outer rotor flux-switching PM motor using systematic multi-level design and control schemes’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 11021112.
    16. 16)
      • 21. Cao, R., Jin, Y., Zhang, Y., et al: ‘A new double-sided HTS flux-switching linear motor with series magnet circuit’, IEEE Trans. Appl. Supercond., 2016, 26, (7), p. 5207405.
    17. 17)
      • 10. Wang, C., Shen, J., Wang, Y.: ‘A new method for reduction of detent force in permanent magnet flux-switching linear motors’, IEEE Trans. Magn., 2009, 45, (6), pp. 28432846.
    18. 18)
      • 7. Hua, W., Cheng, M., Zhu, Z.Q.: ‘Analysis and optimization of back EMF waveform of a flux-switching permanent magnet motor’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 727733.
    19. 19)
      • 9. Shen, Y., Lu, Q., Li, H., et al: ‘Analysis of a novel double-sided yokeless multitooth linear switched-flux PM motor’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 18371845.
    20. 20)
      • 24. Wang, Y., Feng, Q., Li, X., et al: ‘Design, analysis, and experimental test of a segmented-rotor high temperature superconducting flux-switching generator with stationary seal’, IEEE Trans. Ind. Electron., doi: 10.1109/TIE.2018.2814001.
    21. 21)
      • 5. Stumberger, G., Zarko, D., Aydemir, M.T., et al: ‘Design and comparison of linear synchronous motor and linear induction motor for electromagnetic aircraft launch system’. Proc. IEMDC, Madison, USA, June 2003, pp. 494500.
    22. 22)
      • 1. Hellinger, R., Mnich, P.: ‘Linear motor-powered transportation: history, present status, future outlook’, Proc. IEEE, 2009, 97, (11), pp. 18921900.
    23. 23)
      • 6. Lu, Q.F., Li, Y.X., Huang, X.Y., et al: ‘Analysis of transverse-flux linear switched-flux permanent magnet machine’, IEEE Trans. Magn., 2015, 51, (11), p. 8108804.
    24. 24)
      • 13. Cao, R., Cheng, M., Mi, C., et al: ‘Comparison of complementary and modular linear flux-switching motors with different mover and stator pole pitch’, IEEE Trans. Magn., 2013, 49, (4), pp. 14931504.
    25. 25)
      • 19. Li, X., Liu, S., Wang, Y.: ‘Design and analysis of a new HTS dual-rotor flux-switching machine’, IEEE Trans. Appl. Supercond., 2017, 27, (4), p. 5200605.
    26. 26)
      • 11. Cao, R., Cheng, M., Mi, C., et al: ‘A linear doubly salient permanent magnet motor with modular and complementary structure’, IEEE Trans. Magn., 2011, 47, (12), pp. 48094821.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.0090
Loading

Related content

content/journals/10.1049/iet-epa.2018.0090
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address