http://iet.metastore.ingenta.com
1887

Simplified calculation for the radial levitation force of radial-type superconducting magnetic bearing

Simplified calculation for the radial levitation force of radial-type superconducting magnetic bearing

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

It is usually difficult to obtain the radial levitation force of the radial-type superconducting magnetic bearing (SMB) due to the massive numerical calculations and the sophisticated experimental measurements. This study presents a method for fast calculating the radial levitation force of radial-type SMB, which is based on the infinitesimal method and the 2D finite-element method. During the modelling, the radial-type SMB is assumed to be composed circumferentially of infinite superconductor-permanent magnet (SC-PM) infinitesimals with shape of rectangular thin slice. The dependence of levitation force for the SC-PM infinitesimal on the air-gap length between the SC stator and the PM rotor can be obtained using the 2D finite-element model established in Cartesian coordinate system. Moreover, a simplified analytical model of calculating radial levitation force is developed based on the infinitesimal method and the circumferential distribution formula of non-uniform air-gap when the PM rotor exhibits radial eccentricity. The results of theoretical calculation and experimental measurement of radial levitation force show a good agreement, which verifies the feasibility of the proposed method. It has the advantages of fastness and easiness, and can be used as a theoretical tool for the design, optimisation and performance prediction of the radial-type SMB.

References

    1. 1)
      • 1. Hull, J.R.: ‘Superconducting bearings’, Supercond. Sci. Technol., 2000, 13, (2), p. R1.
    2. 2)
      • 2. Ai, L., Zhang, G., Li, W., et al: ‘Research on a superconducting magnetic bearing system for submerged cryogenic disk motor-pump’, IEEE Trans. Appl. Supercond., 2018, 28, (4), pp. 15.
    3. 3)
      • 3. Mukoyama, S., Nakao, K., Sakamoto, H., et al: ‘Development of superconducting magnetic bearing for 300 kW flywheel energy storage system’, IEEE Trans. Appl. Supercond., 2017, 27, (4), pp. 14.
    4. 4)
      • 4. Naseh, M., Heydari, H.: ‘Analytical method for levitation force calculation of radial HTS magnetic bearings’, IET Electr. Power Appl., 2017, 11, (3), pp. 369377.
    5. 5)
      • 5. Patel, A., Hahn, S., Voccio, J., et al: ‘Magnetic levitation using a stack of high temperature superconducting tape annuli’, Supercond. Sci. Technol., 2017, 30, (2), p. 24007.
    6. 6)
      • 6. Naseh, M., Heydari, H.: ‘Levitation force maximization in HTS magnetic bearings formulated by a semi-analytical approach’, IEEE Trans. Appl. Supercond., 2017, PP, (99), p. 1.
    7. 7)
      • 7. Sasaki, H., Yubisui, Y., Sugiura, T.: ‘Resonant amplitude reduction of a rotor supported by a superconducting magnetic bearing with an axial electromagnet’, IEEE Trans. Appl. Supercond., 2015, 25, (3), pp. 15.
    8. 8)
      • 8. Ai, L., Zhang, G., Li, W., et al: ‘Optimization of radial-type superconducting magnetic bearing using the Taguchi method’, Phys. C Supercond. Appl., 2018, 550, pp. 5764.
    9. 9)
      • 9. Cansiz, A.: ‘Vertical, radial and drag force analysis of superconducting magnetic bearings’, Supercond. Sci. Technol., 2009, 22, (7), p. 75003.
    10. 10)
      • 10. Basaran, S., Sivrioglu, S.: ‘Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation’, Supercond. Sci. Technol., 2017, 30, (3), p. 35008.
    11. 11)
      • 11. Ma, G., Lin, Q., Jiang, D., et al: ‘Numerical studies of axial and radial magnetic forces between high temperature superconductors and a magnetic rotor’, J. Low Temp. Phys., 2013, 172, (3–4), pp. 299309.
    12. 12)
      • 12. Werfel, F.N., Floegel-Delor, U., Riedel, T., et al: ‘HTS magnetic bearings in prototype application’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 874879.
    13. 13)
      • 13. Floegel-Delor, U., Rothfeld, R., Wippich, D., et al: ‘Fabrication of HTS bearings with ton load performance’, IEEE Trans. Appl. Supercond., 2007, 17, (2), pp. 21422145.
    14. 14)
      • 14. Dergachev, P., Kosterin, A., Kurbatova, E., et al: ‘Flywheel energy storage system with magnetic HTS suspension and embedded in the flywheel motor-generator’, IEEE International Power Electronics and Motion Control Conference (PEMC), Varna, Bulgaria, Sept 2016, pp. 574579.
    15. 15)
      • 15. Werfel, F.N., Floegel-Delor, U., Riedel, T., et al: ‘Encapsulated HTS bearings: technical and cost considerations’, IEEE Trans. Appl. Supercond., 2005, 15, (2), pp. 23062311.
    16. 16)
      • 16. Lin, Q., Wang, W., Deng, Z., et al: ‘Measurement and calculation method of the radial stiffness of radial high-temperature superconducting bearings’, J. Supercond. Novel Magn., 2015, 28, (6), pp. 16811685.
    17. 17)
      • 17. Park, B.J., Han, Y.H., Jung, S.Y., et al: ‘Static properties of high temperature superconductor bearings for a 10 kW H class superconductor flywheel energy storage system’, Phys. C Supercond., 2010, 470, (20), pp. 17721776.
    18. 18)
      • 18. Navau, C., Del-Valle, N., Sanchez, A.: ‘Macroscopic modeling of magnetization and levitation of hard type-II superconductors: the critical-state model’, IEEE Trans. Appl. Supercond., 2013, 23, (1), p. 8201023.
    19. 19)
      • 19. Sass, F., Sotelo, G.G., de Andrade Junior, R., et al: ‘H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors’, Supercond. Sci. Technol., 2015, 28, (12), p. 125012.
    20. 20)
      • 20. Qu, L., Val, X.E., Sotelo, G.G., et al: ‘Optimization of the superconducting linear magnetic bearing of a maglev vehicle’, IEEE Trans. Appl. Supercond., 2016, 26, (3), pp. 15.
    21. 21)
      • 21. Dias, D.H.N., Sotelo, G.G., Andrade, R.D.: ‘Study of the lateral force behavior in a field cooled superconducting linear bearing’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 15331537.
    22. 22)
      • 22. Dorrell, D.G.: ‘Sources and characteristics of unbalanced magnetic pull in three-phase cage induction motors with axial-varying rotor eccentricity’, IEEE Trans. Ind. Appl., 2011, 47, (1), pp. 1224.
    23. 23)
      • 23. Jiang, J.W., Bilgin, B., Sathyan, A., et al: ‘Analysis of unbalanced magnetic pull in eccentric interior permanent magnet machines with series and parallel windings’, IET Electr. Power Appl., 2016, 10, (6), pp. 526538.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.0063
Loading

Related content

content/journals/10.1049/iet-epa.2018.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address