http://iet.metastore.ingenta.com
1887

Inter-turn short-circuit assessment of DC motor used in railway locomotive

Inter-turn short-circuit assessment of DC motor used in railway locomotive

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with inter-turn short-circuit assessment of DC traction motors used in railway locomotives. This has been done by analysing input current spectra of rectifier unit feeding the traction motor. The analysis includes multi-resolution analysis and discrete wavelet transform (DWT) of current spectra to calculate approximate and detailed coefficients and then to evaluate the skewness, kurtosis and root mean square values. Variation of those values with respect to percentage of inter-turn short circuit at different DWT decomposition levels has been observed. A number of curves have been chosen for fault assessment based on the observations. Deviations from normal condition have also been observed by logic matrix. Depending on the features obtained, normal and different percentages of short in the traction motor windings have been classified and an algorithm has been proposed accordingly. Case study has been carried out on Indian WAP4 locomotive, wherein the input current to the rectifiers has been analysed and efficacy of the proposed algorithm has been validated. If for the locomotives, these parameters are monitored, percentage of inter-turn short circuit in the winding may be assessed far before massive system degradation occurs.

References

    1. 1)
      • 1. Koseki, T.: ‘Technical trends of railway traction in the world’. Proc. the 2010 Int. Power Electronics Conf., Tokyo, Japan, 2010, pp. 28362841, doi: 978-1-4244-5395-5/10.
    2. 2)
      • 2. McCarthy, J.D.: ‘Experience with dc traction motors on British rail’, Power Eng. J., 1990, 4, (5), pp. 239250.
    3. 3)
      • 3. Baciu, I., Pasculescu, D., Cuntan, C.D., et al: ‘DC motor behaviour analysis on blocking the wheels on a railway traction vehicle’, WSEAS Trans. Circuits Syst., 2010, 9, (9), pp. 587596.
    4. 4)
      • 4. Kim, T., Lee, H.W., Kwak, S.: ‘The internal fault analysis of brushless DC motors based on the winding function theory’, IEEE Trans. Magn., 2009, 45, (5), pp. 20902096.
    5. 5)
      • 5. Gou, B., Ge, X., Wang, S., et al: ‘An open-switch fault diagnosis method for single-phase PWM rectifier using a model-based approach in high-speed railway electrical traction drive system’, IEEE Trans. Power Electron., 2015, 31, (5), pp. 111.
    6. 6)
      • 6. Rivera, N.N.: ‘Permanent magnet DC traction motor with reconfigurable winding control’. IDEA Program Final Report, Transportation Research Board, National Research Council, 2007, pp. 118.
    7. 7)
      • 7. Lee, S.T., Park, J.K., Hur, J.: ‘Inter-Turn fault tolerant control in brushless DC motor by using Yoke winding’. Proc. 17th Int. Conf. Electrical Machines Systems, Hangzhou, China, 2014, pp. 10731077.
    8. 8)
      • 8. Saied, M., Shaher, M.A..: ‘Harmonic distortion assessment and minimization for railway systems’, Electr. Power Compon. Syst., 2009, 37, pp. 832846.
    9. 9)
      • 9. Yucai, W., Qianqian, M., Bochong, C.: ‘Fault diagnosis of rotor winding inter-turn short circuit for sensorless synchronous generator through screw’, IET Electr. Power Appl., 2017, 11, (8), pp. 14751482.
    10. 10)
      • 10. Abdallah, H., Benatman, K.: ‘Stator winding inter-turn short-circuit detection in induction motors by parameter identification’, IET Electr. Power Appl., 2017, 11, (2), pp. 272288.
    11. 11)
      • 11. Kia, M.Y., Khedri, M., Najafi, H.R., et al: ‘Hybrid modelling of doubly fed induction generators with inter-turn stator fault and its detection method using wavelet analysis’, IET Gener. Transm. Distrib., 2013, 7, (9), pp. 982990.
    12. 12)
      • 12. Liu, H., Huang, J., Hou, Z., et al: ‘Stator inter-turn fault detection in closed-loop controlled drive based on switching sideband harmonics in CMV’, IET Electr. Power Appl., 2017, 11, (2), pp. 178186.
    13. 13)
      • 13. Hoseini, S.R.K., Farjah, E., Ghanbari, T., et al: ‘Extended Kalman filter-based method for inter-turn fault detection of the switched reluctance motors’, IET Electr. Power Appl., 2016, 10, (8), pp. 714722.
    14. 14)
      • 14. Sun, L., Xu, B., Du, W., et al: ‘Model development and small-signal stability analysis of DFIG with stator winding inter-turn fault’, IET Renew. Power Gener., 2017, 11, (3), pp. 338346.
    15. 15)
      • 15. Arumugam, P., Hamiti, T., Gerada, C.: ‘Turn-turn short circuit fault management in permanent magnet machines’, IET Electr. Power Appl., 2015, 9, (9), pp. 634641.
    16. 16)
      • 16. Mostafaei, M., Haghjoo, F.: ‘Flux-based turn-to-turn fault protection for power transformers’, IET Electr. Power Appl., 2016, 10, (5), pp. 11541163.
    17. 17)
      • 17. Roshanfekr, R., Jalilian, A.: ‘Wavelet-based index to discriminate between minor inter-turn short-circuit and resistive asymmetrical faults in stator windings of doubly fed induction generators: a simulation study’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 374381.
    18. 18)
      • 18. Teymoor, G.: ‘Autocorrelation function-based technique for stator turn-fault detection of induction motor’, IET Sci. Meas. Technol., 2016, 10, (2), pp. 100110.
    19. 19)
      • 19. Hamzehbahmani, H., Anderson, P., Jenkins, K., et al: ‘Experimental study on inter-laminar short-circuit faults at random positions in laminated magnetic cores’, IET Electr. Power Appl., 2016, 10, (7), pp. 604613.
    20. 20)
      • 20. Kim, K.H., Gu, B.G., Jung, I.S.: ‘Online fault-detecting scheme of an inverter-fed permanent synchronous motor under stator winding shorted turn and inverter switch open’, IET Electr. Power Appl., 2011, 5, (6), pp. 529539.
    21. 21)
      • 21. Kim, K.H., Choi, D.U., Gu, B.G., et al: ‘Fault model and performance evaluation of an inverter-fed permanent magnet synchronous motor under winding shorted turn and inverter switch open’, IET Electr. Power Appl., 2010, 4, (4), pp. 17518679.
    22. 22)
      • 22. Belguerras, L., Padilla, J.A., Arumugam, P., et al: ‘Non-linear circuit based model of permanent synchronous machine under inter-turn fault: a simple approach based on healthy machine data’, IET Electr. Power Appl., 2016, 10, (6), pp. 560570.
    23. 23)
      • 23. Padilla, J.A., Sumner, M., Gerada, C.: ‘Winding condition monitoring scheme for a permanent magnet machine using high-frequency injection’, IET Electr. Power Appl., 2011, 5, (1), pp. 8999.
    24. 24)
      • 24. Naderi, P., Shiri, A.: ‘Rotor/stator inter-turn short circuit fault detection for saturable wound-rotor induction machine by modified magnetic equivalent circuit approach’, IEEE Trans. Magn., 2017, 53, (7), pp. 113, doi: 10.1109/TMAG.2017.2672924.
    25. 25)
      • 25. Sarikhani, A., Mohammed, Q.A.: ‘Inter-turn fault detection in PM synchronous machines by physics-based back electromagnetic force estimation’, IEEE Trans. Ind. Electron., 2012, 60, (8), pp. 34723484, doi: 10.1109/TIE.2012.2222857.
    26. 26)
      • 26. Lee, S.T., Hur, J.: ‘Detection technique for stator inter-turn faults in BLDC motors based on third-harmonic components of line currents’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 143150, doi: 10.1109/TIA.2016.2614633.
    27. 27)
      • 27. Kar Ray, D., Deb, S., Kumar, T., et al: ‘Diagnosis of Sub-synchronous inter-harmonics in power system signals under non-sinusoidal environment’, LCIT Natl. J. Eng. Technol., 2012, 1, (1), pp. 272276.
    28. 28)
      • 28. Kar Ray, D., Deb, S., Kumar, T., et al: ‘Diagnosis of sub-synchronous inter-harmonics in power system signals using multi-resolution analysis of discrete wavelet transform’, IEM Int. J. Manag. Technol., 2012, 2, (2), pp. 1116.
    29. 29)
      • 29. Kar Ray, D., Deb, S., Sengupta, S.: ‘Diagnosis of sub-synchronous inter-harmonics in arc furnace transformer using multi-resolution analysis of discrete wavelet transform’, Int. J. Electr. Electron. Comput. Eng., 2012, 1, (2), pp. 6670.
    30. 30)
      • 30. Kar Ray, D., Sengupta, S.: ‘Diagnosis of unbalance in 3 phase induction motor using multi-resolution analysis of discrete wavelet transform’, Int. J. Electron. Commun. Technol., 2013, 4, (1), pp. 187190.
    31. 31)
      • 31. Chattopadhyay, S., Mitra, M., Sengupta, S.: ‘Electric power quality’ (Springer, Heidelberg, 2011), pp. 159175, ISBN: 978-94-007-0634-7.
    32. 32)
      • 32. Chattopadhyay, A., Chattopadhyay, S., Sengupta, S.: ‘Measurement of harmonic distortion and skewness of stator current of induction motor at crawling in Clarke plane’, IET Sci. Meas. Technol., 2014, 8, (6), pp. 528536.
    33. 33)
      • 33. Karmakar, S., Chattopadhyay, S., Mitra, M., et al: ‘Induction motor fault diagnosis’ (Springer, London, 2016, 1st edn.).
    34. 34)
      • 34. Ojaghi, M., Aghmasheh, R., Sabouri, M.: ‘Model-based exact technique to identify type and degree of eccentricity fault in induction motors’, IET Electr. Power Appl., 2016, 10, (8), pp. 706713, doi: 10.1049/iet-epa.2016.0026.
    35. 35)
      • 35. Faiz, J., Moosavi, S.M.M.: ‘Detection of mixed eccentricity fault in doubly-fed induction generator based on reactive power spectrum’, IET Electr. Power Appl., 2017, 11, (16), pp. 10761084, doi: 10.1049/iet-epa.2016.0049.
    36. 36)
      • 36. The Traction Rolling Stock Departmental Records, Eastern Railway Headquarters, Kolkata, India.
    37. 37)
      • 37. Mukhopadhyay, A.K.: ‘Matrix analysis of electrical machines’ (New Age International (P) Limited Publishers, Calcutta, 1996), ch. 12, p. 211, ISBN: 81-224-0972-5.
    38. 38)
      • 38. https://drive.google.com/file/d/1UMn6WnqDxUVkw4Id_dIwZ2qDCnLKQESo/view?usp=sharing.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.0047
Loading

Related content

content/journals/10.1049/iet-epa.2018.0047
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address