access icon free Thermal analysis and experimental verification of a staggered-teeth transverse-flux permanent-magnet linear machine

To overcome the inherent demerit of low power factor existing in transverse-flux permanent-magnet (TFPM) machines, a tubular staggered-teeth TFPM linear machine is presented here. Linear alternator integrated with free-piston Stirling engines could offer a great potential in a wide variety of applications ranging from solar energy generation to space power supply. The thermal behaviour of the machine is studied using a three-terminal lumped-parameter thermal network (LPTN) to solve the problem of temperature overestimation of the traditional LPTN. The determination of thermal resistances and thermal parameters are introduced in detail. The temperatures of various components of the machine under different load conditions are calculated by both the three-terminal LPTN model and the numerical thermal model. Sensitivity analysis is carried out to study the influence of critical thermal parameters on the temperature rise of the machine. On this basis, the effectiveness of the forced air cooling is investigated. A prototype is fabricated and temperature experiment indicates that there is a good agreement between measurement and calculation.

Inspec keywords: Stirling engines; finite element analysis; cooling; linear machines; thermal analysis; power factor; permanent magnet machines; lumped parameter networks; pistons

Other keywords: space power supply; numerical thermal model; staggered-teeth transverse-flux; three-terminal LPTN model; traditional LPTN; permanent-magnet linear machine; free-piston Stirling engines; lumped-parameter thermal network; staggered-teeth TFPM linear machine; critical thermal parameters; thermal resistances; experimental verification; solar energy generation; great potential; transverse-flux permanent-magnet; sensitivity analysis; temperature rise; inherent demerit; linear alternator; low power factor; thermal analysis; thermal behaviour; temperature experiment

Subjects: a.c. machines; Finite element analysis; d.c. machines; Synchronous machines; Linear machines

References

    1. 1)
      • 9. Guo, Y., Zhu, J.G., Watterson, P.A., et al: ‘Development of a PM transverse flux motor with soft magnetic composite core’, IEEE Trans. Magn., 2006, 21, (2), pp. 426434.
    2. 2)
      • 10. Hasanien, H.M., Abd-Rabou, A.S., Sakr, S.M.: ‘Design optimization of transverse flux linear motor for weight reduction and performance improvement using response surface methodology and genetic algorithms’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 598605.
    3. 3)
      • 21. ‘Calculating Properties for Core Loss (BP Curve)- Maxwell Online Help’ https://www.ansys.com/support/customer-portal, accessed 15th December 2017.
    4. 4)
      • 17. Incropera, F.P.: ‘Fundamentals of heat and mass transfer’ (John Wiley & Sons, Hoboken, NJ, USA, 2011).
    5. 5)
      • 19. Zhou, P., Badics, Z., Lin, D., et al: ‘Nonlinear T -Ω formulation including motion for multiply connected 3-D problems’, IEEE Trans. Magn., 2008, 44, (6), pp. 718721.
    6. 6)
      • 11. Oh, J.-H., Kwon, B.-I.: ‘Design, optimization, and prototyping of a transverse flux-type-switched reluctance generator with an integrated rotor’, IEEE Trans. Energy Convers., 2016, 31, (4), pp. 15211529.
    7. 7)
      • 20. Zhou, P., Fu, W.N., Lin, D., et al: ‘Numerical modeling of magnetic devices’, IEEE Trans. Magn., 2004, 40, (4), pp. 18031809.
    8. 8)
      • 7. Chang, J., Kang, D., Lee, J., et al: ‘Development of transverse flux linear motor with permanent-magnet excitation for direct drive applications’, IEEE Trans. Magn., 2005, 41, (5), pp. 19361939.
    9. 9)
      • 3. Karabulut, H.: ‘Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles’, Renew. Energy, 2011, 36, pp. 17041709.
    10. 10)
      • 13. Zheng, P., Yu, B., Zhu, S., et al: ‘Research on control strategy of free-piston Stirling-engine linear-generator system’. Proc. of Inter. Conf. on Electrical Machines and Systems, Hangzhou, China, October 2014, pp. 23002304.
    11. 11)
      • 16. Mellor, P.H., Roberts, D., Turner, D.R.: ‘Lumped parameter thermal model for electrical machines of TEFC design’, IET Electr. Power Appl., 1991, 138, (5), pp. 205218.
    12. 12)
      • 2. Castellanos, L.S.M., Caballero, G.E.C., Cobas, V.R.M., et al: ‘Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation’, Renew. Energy, 2017, 107, pp. 2335.
    13. 13)
      • 1. Luo, Z., Sultan, U., Ni, M., et al: ‘Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms’, Renew. Energy, 2016, 94, pp. 114125.
    14. 14)
      • 12. Zheng, P., Yu, B., Yan, H., et al: ‘Electromagnetic analysis of a novel cylindrical transverse-flux permanent-magnet linear machine’, Appl. Comput. Electromagn. Soc. J., 2013, 28, (9), pp. 879891.
    15. 15)
      • 14. Harris, M., Pajooman, G., Sharkh, S.A.: ‘The problem of power factor in VRPM (transverse-flux) machines’. Proc. of Inter. Conf. on Electrical Machines and Drives, Cambridge, UK, September 1997, pp. 386390.
    16. 16)
      • 4. Sripakagorn, A., Srikam, C.: ‘Design and performance of a moderate temperature difference Stirling engine’, Renew. Energy, 2011, 36, pp. 17281733.
    17. 17)
      • 15. Kuehbacher, D., Kelleter, A., Gerling, D.: ‘An improved approach for transient thermal modeling using lumped parameter networks’. Proc. of Inter. Conf. on Electric Machines and Drives, Chicago, USA, May 2013, pp. 824831.
    18. 18)
      • 18. Yu, B., Zhang, S., Yan, J., et al: ‘Thermal analysis of a novel cylindrical transverse-flux permanent-magnet linear machine’, Energies, 2015, 8, (8), pp. 78747896.
    19. 19)
      • 8. Jia, Z., Lin, H., Fang, S., et al: ‘A novel transverse flux permanent magnet generator with double C-hoop stator and flux-concentrated rotor’, IEEE Trans. Magn., 2015, 51, (11), pp. 14.
    20. 20)
      • 5. Zouaghi, M.W., Abdennadher, I., Masmoudi, A.: ‘Lumped circuit-based sizing of quasi-Halbach PM excited T-LSMs: application to free piston engines’, IET Electr. Power Appl., 2017, 11, (4), pp. 557566.
    21. 21)
      • 6. Weh, H., May, H.: ‘Achievable force densities for permanent magnet excited machines in new configurations’. Proc. of Inter. Conf. on Electrical Machines, München, München, 1986, pp. 11071111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0828
Loading

Related content

content/journals/10.1049/iet-epa.2017.0828
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading