access icon free Performance indexes’ evaluation of a NSynRM with sinusoidal rotor shape

This study presents the evaluation of performance indexes of a novel synchronous reluctance motor (NSynRM) that has an axially sinusoidal rotor lamination shape. The stator of a 5.5 kW, 4-pole, 50 Hz conventional three-phase squirrel cage induction motor, with distributed and chorded by one slot, double-layer winding, is used for both standard and NSynRMs. Owing to the nature of the sinusoidal rotor structure, the three-dimensional finite element analysis (FEA) is utilised to study the electromagnetic parameters of interests. The NSynRM with sinusoidal rotor shape results is compared with the standard SynRM without cut-off on the q-axis. The FEA results are validated by means of practical measurements.

Inspec keywords: laminations; squirrel cage motors; reluctance motors; rotors; stators; induction motors; finite element analysis

Other keywords: axially sinusoidal rotor lamination shape; 50 Hz conventional three-phase squirrel cage; power 5.5 kW; performance indexes; sinusoidal rotor shape results; 4-pole; three-dimensional finite element analysis; synchronous reluctance motor; double-layer winding; sinusoidal rotor structure; frequency 50.0 Hz; standard NSynRMs; NSynRM

Subjects: Finite element analysis; Numerical analysis; Asynchronous machines; Synchronous machines

References

    1. 1)
      • 19. Bilyi, V., Gerling, D., Bilyi, D.: ‘Flux barrier design method for torque ripple reduction in synchronous reluctance machines’. IEEE Transportation Electrification Conf. Expo, Asia-Pacific (ITEC), Busan, Korea, 1–4 June 2016.
    2. 2)
      • 21. Vandevedle, L., Melkebeek, A.A.: ‘A survey on magnetic force distribution based on different magnetization models and on virtual work principle’, IEEE Trans. Magn., 2001, 37, (5), pp. 34053409.
    3. 3)
      • 8. Lovelace, E.C.: ‘Optimization of a magnetically saturable IPM Sync. Mac. drive’. PhD, Department of Electrical Engineering & Computer Science, MIT, 2000.
    4. 4)
      • 14. Zhao, W., Lipo, T.A., Kwon, B.: ‘Material-efficiency magnet shape for torque pulsation minimization in synchronous permanent motors’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 55795787.
    5. 5)
      • 1. Wang, W., Fahini, B.: ‘Comparative study of electric drives for EV/HEV propulsion system’. IEEE 2012 Electrical System for Aircraft, Railway and Ship Propulsion (ESARS), Bologna, Italy, 16–18 October 2012.
    6. 6)
      • 7. Bianchi, N., Bolognani, S., Bond, D., et al: ‘Rotor flux-barrier design for torque ripple reduction in synchronous reluctance motors’. Proc. 41st IEEE Conf. Industry Applications, Tampa, Florida, USA, 2006, pp. 11931200.
    7. 7)
      • 11. Armando, E., Guglielmi, P., Pellegrino, G.M., et al: ‘Accurate modelling and Perf. Anal. of IPM-PMASR motors’, IEEE Trans. Ind. Appl., 2009, 45, (1), pp. 123130.
    8. 8)
      • 17. Boldea, I., Tutelea, L.: ‘Electric machines: steady state, transients and design with MATLAB’ (Taylor and Francis, New York, USA, 2010).
    9. 9)
      • 22. Guo, Y.G., Zhu, J.G.: ‘Improved methods for force and torque calculation in electrical machines by 3D finite element analysis’. Proc. Fifth Int. Conf. Electrical Machines and Systems, Chenyang, China, 2001.
    10. 10)
      • 3. Jurca, N.F., Mircea, R., Martis, C., et al: ‘Synchronous reluctance motors for small electric traction vehicle’. 2014 Int. Conf. Exposition on Electrical and Power Engineering (EPE 2014), Iasi, Romania, 16–18 October 2014.
    11. 11)
      • 2. Croitorescu, V., Croitorescu, I., Danciu, G.: ‘Functional modelling of an electric machine used on road vehicles’. Eighth Int. Symp. Advanced Topics in Electrical Engineering, Bucharest, Romania, 23–24 May 2013.
    12. 12)
      • 20. Fratta, A., Troglia, G.P., Vagati, A., et al: ‘Evaluation of torque ripple in high performance synchronous reluctance motors’. IEEE Industry Application Society Annual Meeting, Toronto, Canada, 1993.
    13. 13)
      • 10. Bianchi, N., Bolognani, S., Consoli, A., et al: ‘Design analysis and control of interior permanent magnet synchronous machines’. Proc. Int. Conf. Electrical Machines, ICEM, Helsinki, August 2000.
    14. 14)
      • 6. Bianchi, N., Bolognani, S., Bon, D., et al: ‘Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and PM-assisted synchronous reluctance motors’, IEEE Trans. Ind. Appl., 2009, 45, (3), pp. 921928.
    15. 15)
      • 13. Sanada, M., Hiramato, K., Morinoto, S., et al: ‘Torque ripple improvement for synchronous reluctance motor using asymmetric flux barrier arrangement’. Proc. IEEE Industrial Applications Society Annual Meeting, Salt Lake City, Utah, USA, 12–16 October 2003.
    16. 16)
      • 5. Taghavi, S., Pillay, P.: ‘A mechanically robust rotor with transverse-laminations for a synchronous reluctance machine for traction applications’. IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburg, PA, USA, 14–18 September 2014.
    17. 17)
      • 15. Muteba, M., Twala, B., Nicolae, D.V.: ‘Torque ripple minimization in synchronous reluctance motor using a sinusoidal rotor lamination shape’. Proc. Int. Conf. Electrical Machines, ICEM, 2016, Lausanne, Switzerland, 4–7 September 2016.
    18. 18)
      • 9. Fessler, R.R., Olszewski, M.: ‘Assessment of motor technologies for traction drives of hybrid and electrical vehicles’. USA Department of Energy, Freedom Car and Vehicle Technologies, Washington DC, March 2011.
    19. 19)
      • 12. Kamper, M.J., Van der Merwe, F.S., Williamson, S.: ‘Direct finite element design optimization of the cage-less reluctance synchronous machine’, IEEE Trans. Energy Convers., 1996, 11, IS, (3), pp. 547555.
    20. 20)
      • 4. Lin, J., Cheng, K.W.E., Zhang, Z.: ‘Experimental investigation of in-wheel reluctance motor driving system for future electric vehicles’. Third Int. Conf. Power Electronics Systems and Applications, Hong Kong, 2009.
    21. 21)
      • 18. Ferreira da Luz, M.V., Deschamps, E., Runcos, F., et al: ‘Analysis of 65 kVA high efficiency synchronous generator using finite element method’. Proc. XII Int. Symp. Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), Spain, 2005.
    22. 22)
      • 16. Muteba, M., Twala, B., Nicolae, D.V.: ‘Based 3D finite element analysis of a synchronous reluctance motor with sinusoidal rotor lamination shape’. Proc. Int. Conf. Electrical Machines, ICEM, 2016, Lausanne, Switzerland, 4–7 September 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0711
Loading

Related content

content/journals/10.1049/iet-epa.2017.0711
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading