Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dynamic circuit model considering core losses and phase interaction for switched reluctance machines

This study sets forth an equivalent electric circuit (EEC) model including core losses and phase interactions to obtain a more accurate steady and dynamic performance of the high speed switched reluctance motor (SRM) during the design, analysis, and control of the SRM drive system. The magnetic equivalent circuit (MEC) method is used to calculate the flux linkage and torque quickly and relative accurately. Based on the principle of transformation between the MEC and EEC, the EEC model is derived from the MEC model. To enhance the model precision, the dynamic core losses and phase interactions are analysed and added to the EEC model. The relationship between the phase current and virtual current corresponding to different parts is deduced. Then the simulation model of the whole SRM driver systems is established in MATLAB/Simulink to obtain the phase current and virtual current corresponding to a different portion. The experimental and simulated results of the static MEC model and the whole SRM drive system including the EEC model provide the conclusive evidence for validating their practicability.

References

    1. 1)
      • 24. Deshpande, U.S., Cathey, J.J., Richter, E.: ‘High-force density linear switched reluctance machine’, IEEE Trans. Ind. Appl., 1995, 31, (2), pp. 345352.
    2. 2)
      • 25. Cheng, M., Chau, K.T., Chan, C.C., et al: ‘Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors’, IEEE Trans. Magn., 2000, 36, (1), pp. 339348.
    3. 3)
      • 29. Lin, D., Zhou, P., Stanton, S., et al: ‘An analytical circuit model of switched reluctance motors’, IEEE Trans. Magn., 2009, 45, (12), pp. 53685375.
    4. 4)
      • 23. Khan, S.H., Ivanov, A.A.: ‘An analytical method for the calculation of static characteristics of linear step motors for control rod drives in nuclear reactors’, IEEE Trans. Magn., 1995, 31, (3), pp. 23242331.
    5. 5)
      • 11. Lin, Z., Reay, D.S., Williams, B.W.: ‘Online modeling for switched reluctance motors using b-spline neural networks’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 33173322.
    6. 6)
      • 13. Calverley, S.D., Jewell, G.W., Saunders, R.J.: ‘Prediction and measurement of core losses in a high-speed switched-reluctance machine’, IEEE Trans. Magn., 2005, 41, (11), pp. 42884298.
    7. 7)
      • 28. Peng, W., Gyselinck, J.: ‘Combined magnetic-equivalent-circuit and finite-element modelling of switched reluctance machines’. Proc. 2016 IEEE Int. Energy Conf. (ENERGYCON), Leuven, Belgium, April 2016, pp. 16.
    8. 8)
      • 12. Raulin, V., Husain, I., Radun, A.: ‘Modeling of losses in switched reluctance machines’, IEEE Trans. Ind. Appl., 2004, 40, (6), pp. 15601569.
    9. 9)
      • 8. Mao, S.H., Dorrell, D., Tsai, M.C.: ‘Fast analytical determination of aligned and unaligned flux linkage in switched reluctance motors based on a magnetic circuit model’, IEEE Trans. Magn., 2009, 45, (7), pp. 29352942.
    10. 10)
      • 30. Roshen, W.A.: ‘A practical, accurate, and very general core loss model for nonsinusoidal waveforms’, IEEE Trans. Power Electron., 2007, 22, (1), pp. 30401.
    11. 11)
      • 32. Song, S.J., Zhang, M., Ge, L.F.: ‘A new fast method for obtaining flux-linkage characteristics of SRM’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 41054117.
    12. 12)
      • 26. Ding, W., Liang, D.L.: ‘A fast nonlinear variable structure equivalent magnetic circuit modeling for dual-channel switched reluctance machine’, Energy Convers. Manage., 2011, 52, (1), pp. 36523663.
    13. 13)
      • 7. Sheth, N.K., Rajagopal, R.: ‘Calculation of the flux-linkage characteristics of a switched reluctance motor by flux tube method’, IEEE Trans. Magn., 2005, 41, (10), pp. 40694071.
    14. 14)
      • 10. Song, S., Liu, W., Wang, Y.: ‘Modeling, dynamic simulation and control of a four-phase switched reluctance motor’. Proc. IEEE Control Automation Conf. (ICCA), Guangzhou, China, May 2007, pp. 12901295.
    15. 15)
      • 22. Radun, A.V.: ‘Development of dynamic magnetic circuit models including iron saturation and losses’, IEEE Trans. Magn., 2014, 50, (5), pp. 110.
    16. 16)
      • 6. Stuikys, A., Sykulski, J.K.: ‘An efficient design optimization framework for nonlinear switched reluctance machines’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 19851993.
    17. 17)
      • 18. Zhong, R., Xu, Y.Q., Hua, W., et al: ‘An improved nonlinear model of switched reluctance motor with losses’. Proc. 2013 Int. Symp. on Industrial Electronics, Taipei, May 2013, pp. 15.
    18. 18)
      • 1. Vijayakumar, K., Karthikeyan, R., Paramasivam, S., et al: ‘Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review’, IEEE Trans. Magn., 2008, 44, (12), pp. 46054617.
    19. 19)
      • 34. Wang, Q.L., Chen, H, Xu, T., et al: ‘Inductance estimation method for linear switched reluctance machines considering iron losses’, IET Electr. Power Appl., 2016, 10, (3), pp. 181188.
    20. 20)
      • 21. Ding, W., Liang, D., Sui, H.: ‘Dynamic modeling and performance prediction for dual-channel switched reluctance machine considering mutual coupling’, IEEE Trans. Magn., 2010, 46, (9), pp. 36523663.
    21. 21)
      • 20. Charton, J.T., Corda, J., Stephenson, J.M., et al: ‘Dynamic modeling of switched reluctance machines with iron losses and phase interactions’, IEE Proc. Electr. Power Appl., 2006, 153, (3), pp. 327336.
    22. 22)
      • 33. Corda, J., Jamil, S.: ‘Experimental determination of equivalent-circuit parameters of a tubular switched reluctance machine with solid-steel magnetic core’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 304310.
    23. 23)
      • 2. Bostanci, E., Moallem, M., Parsapour, A., et al: ‘Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study’, IEEE Trans. Transp. Electrif., 2017, 3, (1), pp. 5875.
    24. 24)
      • 4. Raminosoa, T., Blunier, B., Fodorean, D., et al: ‘Design and optimization of a switched reluctance motor driving a compressor for a PEM fuel-cell system for automotive applications’, IEEE Trans. Ind. Electron., 2010, 57, (9), pp. 29882997.
    25. 25)
      • 19. Preston, M.A., Lyons, J.P.: ‘A switched reluctance motor with mutual coupling and multi-phase excitation’, IEEE Trans. Magn., 1991, 27, (6), pp. 54235425.
    26. 26)
      • 17. Chen, L., Chen, H., Yan, W.: ‘A fast iron loss calculation model for switched reluctance motors’, IET Electr. Power Appl., 2017, 11, (3), pp. 478486.
    27. 27)
      • 14. Ganji, B., Faiz, J., Kasper, K., et al: ‘Core loss model based on finite-element method for switched reluctance motors’, IET Electr. Power Appl., 2010, 4, (7), pp. 603617.
    28. 28)
      • 3. Choi, J.-H., Kim, T.H., Kim, Y.-S., et al: ‘The finite element analysis of switched reluctance motor considering asymmetrical bridge converter and dc link voltage ripple’, IEEE Trans. Magn., 2005, 41, (5), pp. 16401643.
    29. 29)
      • 9. Ichinokura, O., Kikuchi, T., Nakamura, K., et al: ‘Dynamic simulation model of switched reluctance generator’, IEEE Trans. Magn., 2003, 39, (5), pp. 32533255.
    30. 30)
      • 31. Stephenson, J.M., Corda, J.: ‘Computation of torque and current in doubly salient reluctance motors from nonlinear magnetization data’, Proc. Inst. Electr. Eng., 1997, 126, (5), pp. 393396.
    31. 31)
      • 27. Kokernak, J.M., Torrey, D.A.: ‘Magnetic circuit model for the mutually coupled switched-reluctance machine’, IEEE Trans. Magn., 2000, 36, (2), pp. 500507.
    32. 32)
      • 15. Toda, H., Senda, K., Morimoto, S., et al: ‘Influence of various non-oriented electrical steels on motor efficiency and iron loss in switched reluctance motor’, IEEE Trans. Magn., 2013, 49, (7), pp. 38503853.
    33. 33)
      • 16. Kartigeyan, J., Ramaswamy, M.: ‘Effect of material properties on core loss in switched reluctance motor using non-oriented electrical steels’, J. Magn., 2017, 22, pp. 9399.
    34. 34)
      • 5. Chen, H., Wang, Q.: ‘Modeling of switched reluctance linear launcher’, IEEE Trans. Plasma Sci., 2013, 41, (5), pp. 11231130.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0693
Loading

Related content

content/journals/10.1049/iet-epa.2017.0693
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address