Optimum design of the stator parameters for noise and vibration reduction in BLDC motor

Optimum design of the stator parameters for noise and vibration reduction in BLDC motor

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new optimum structural design is presented here in order to shift the natural frequencies of the stator structure in brushless DC motor to the highest values at different mode shapes and increase the stator stiffness. Shifting the stator natural frequencies to higher values reduces or eliminates the severe effects of the structural resonances as the coincidence of the natural frequencies and the components of the motor electromagnetic excitation forces occur at higher frequencies at which the forces have lower amplitudes. In the proposed structural design, some parameters relating to stator slot are optimised to shift the stator's natural frequencies to the highest values without changing the slot areas and the stator outer diameter as the problem constraints. The optimisation is done by the response surface methodology combined with the modal analysis by the finite element method (FEM). The validity of the optimisation method is confirmed by FEM simulations and experimental tests at different speed regions. Moreover, the performances of the prototype and optimum motors are analysed by FEM and experimental tests to show that the stator parameters optimisation process does not cause any negative influences on the quality of the motor performance.


    1. 1)
      • 1. Kwack, J., Min, S., Hong, J. P.: ‘Optimal stator design of interior permanent magnet motor to reduce torque ripple using the level set method’, IEEE Trans. Magn., 2010, 46, (6), pp. 21082111.
    2. 2)
      • 2. Kwack, J., Min, S., Hong, J. P.: ‘Level-set-based optimal stator design of interior permanent-magnet motor for torque ripple reduction using phase-field model’, IEEE Trans. Magn., 2011, 47, (10), pp. 30203023.
    3. 3)
      • 3. Han, K. J., Cho, H. S., Cho, D. H., et al: ‘Optimal core shape design for cogging torque reduction of brushless DC motor using genetic algorithm’, IEEE Trans. Magn., 2000, 36, (4), pp. 19271931.
    4. 4)
      • 4. Ishikawa, T., Yamada, M., Kurita, N.: ‘Design of magnet arrangement in interior permanent synchronous motor by response surface methodology in consideration of torque and vibration’, IEEE Trans. Magn., 2011, 47, (5), pp. 12901293.
    5. 5)
      • 5. Kim, K. S., Lee, C. M., Hwang, G. Y., et al: ‘Effects of the number of poles on the acoustic noise from BLDC motors’, Springer J. Mech. Sci. Technol., 2011, 25, (2), pp. 273277.
    6. 6)
      • 6. Kim, D. H., Choi, J. H., Son, C. W., et al: ‘Theoretical analysis and experiments of axial flux PM motors with minimized cogging torque’, Springer J. Mech. Sci. Technol.’, 2009, 23, (2), pp. 335343.
    7. 7)
      • 7. Abbaszadeh, K., Alam, F. R., Teshnehlab, M.: ‘Slot opening optimization of surface mounted permanent magnet motor for cogging torque reduction’, Energy Convers. Manage., 2012, 55, pp. 108115.
    8. 8)
      • 8. Ede, J.D., Zhu, Z.Q., Howe, D.: ‘Rotor resonances of high-speed permanent-magnet brushless machines’, IEEE Trans. Ind. Appl., 2002, 38, (6), pp. 15421548.
    9. 9)
      • 9. Fei, W., Luk, P.C.: ‘Investigation of radial electromagnetic force density and vibration in a fractional-slot interior permanent magnet synchronous machine’. 2013 IEEE Energy Conversion Congress and Exposition (ECCE), Denver, CO, USA, October 2013, pp. 49985005.
    10. 10)
      • 10. Sun, T., Kim, J.M., Lee, G.H., et al: ‘Effect of pole and slot combination on noise and vibration in permanent magnet synchronous motor’, IEEE Trans. Magn., 2011, 47, (5), pp. 10381041.
    11. 11)
      • 11. Srinivas, K.N., Arumugam, R.: ‘Static and dynamic vibration analyses of switched reluctance motors including bearings, housing, rotor dynamics, and applied loads’, IEEE Trans. Magn., 2004, 40, (4), pp. 19111919.
    12. 12)
      • 12. Jung, J.W., Kim, D.J., Hong, J.P., et al: ‘Experimental verification and effects of step skewed rotor type IPMSM on vibration and noise’, IEEE Trans. Magn., 2011, 47, (10), pp. 36613664.
    13. 13)
      • 13. Riemer, B., Leßmann, M., Hameyer, K.: ‘Rotor design of a high-speed permanent magnet synchronous machine rating 100,000rpm at 10kW’. IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, USA, September 2010, pp. 39783985.
    14. 14)
      • 14. Jang, G.H., Yoon, J.W.: ‘Three dimensional analysis of magnetic force and torque in a BLDC motor due to the axial variation of yoke and pole’, IEEE Trans. Magn., 1999, 35, (5), pp. 36943696.
    15. 15)
      • 15. Kim, D.Y., Nam, J.K., Jang, G.H.: ‘Reduction of magnetically induced vibration of a spoke-type IPM motor using magnetomechanical coupled analysis and optimization’, IEEE Trans. Magn., 2013, 49, (9), pp. 50975105.
    16. 16)
      • 16. Kim, D.Y., Jang, G.H., Nam, J.K.: ‘Magnetically induced vibrations in an IPM motor due to distorted magnetic forces arising from flux weakening control’, IEEE Trans. Magn., 2013, 49, (7), pp. 39293932.
    17. 17)
      • 17. Vijayraghavan, P., Krishnan, R.: ‘Noise in electric machines: a review’, IEEE Trans. Ind. Appl., 1999, 35, (5), pp. 10071013.
    18. 18)
      • 18. Alvarez, L.: ‘Design optimization based on genetic programming’. PhD thesis, University of Bradford, 2000.
    19. 19)
      • 19. Gieras, J.F., Wang, C., Lai, J.C.: ‘Noise of polyphase electric motors’ (CRC Press, FL, 2006, 1st edn.).
    20. 20)
      • 20. Leissa, A.: ‘Vibration of shells’ (Acoustic Society of America, American Institute of Physics, Ohio State University Press, Columbus, Ohio, 1993, 1st edn.).
    21. 21)
      • 21. Soedel, W.: ‘Vibrations of shells and plates’ (Marcel Decker Inc., New York, 1993, 2nd edn.).
    22. 22)
      • 22. Yang, S.J.: ‘Low-noise electrical motors’ (Oxford University Press, Oxford, UK, 1981, 1st edn.).
    23. 23)
      • 23. Hur, J., Reu, J.W., Kim, B.W., et al: ‘Vibration reduction of IPM-type BLDC motor using negative third harmonic elimination method of air-gap flux density’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 13001309.
    24. 24)
      • 24. Yim, K.H., Jang, J.W., Jang, G.H.: ‘Forced vibration analysis of an IPM motor for electrical vehicles due to magnetic force’, IEEE Trans. Magn., 2012, 48, (11), pp. 29812984.

Related content

This is a required field
Please enter a valid email address