Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Large electric machines for aircraft electric propulsion

To achieve benefits similar to those seen in hybrid-/all-electric ground-based and marine vehicles, electric propulsion has been proposed for large commercial aircraft. Among the main drivers of this are improved fuel economy, reduced harmful emissions, and lower audible noise. In converting to electric propulsion, the added electrical components’ masses must be minimised so that the benefits that the components enable – improved turbine efficiency, distributed propulsion and propulsion-airframe integration – are not cancelled out by their weight penalty. This puts stringent requirements on the large electric machines used in the system, both those that generate electric power from the turbine shaft and those that drive propellers or ducted fans, because they are among the heaviest of the added electric components. A key machine design metric in this application is the specific power (SP), or the power-to-mass ratio. This study gives a comprehensive overview of large electric machines for aircraft electric propulsion applications, with a focus on methods for mass reduction and SP improvement.

References

    1. 1)
      • 59. Kuznetsov, S.: ‘Machine design and configuration of a 7000 HP hybrid electric drive for naval ship propulsion’. IEEE 2011 IEEE Int. Electric Machines and Drives Conf. (IEMDC), 2011, pp. 16251628.
    2. 2)
      • 24. Bradley, M.K., Droney, C.K.: ‘Subsonic Ultra Green Aircraft Research: phase II – volume II – hybrid electric design exploration’. Report No. NASA/CR-2015-218704/Volume II, 2015.
    3. 3)
      • 27. Schiltgen, B.T., Freeman, J.: ‘Aeropropulsive interaction and thermal system integration within the ECO-150: a turboelectric distributed propulsion airliner with conventional electric machines’. 16th AIAA Aviation Technology, Integration, and Operations Conf., AIAA AVIATION Forum, Paper No. AIAA 2016-4064.
    4. 4)
      • 47. Remy HVH410 Application Manual.
    5. 5)
      • 53. Kosaka, T., Matsui, N., Kamada, Y., et al: ‘Experimental drive performance evaluation of high power density wound field flux switching motor for automotive applications’, Proc. 7th IET Int. Conf. Power Electron. Mach. Drives (PEMD'14), 2014, pp. 16.
    6. 6)
      • 69. Caricchi, F., Maradei, F., De Donato, G., et al: ‘Axial-flux permanent-magnet generator for induction heating gensets’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 128137.
    7. 7)
      • 56. Acharya, D., Zhou, L., Zheng, L., et al: ‘Systems design, fabrication, and testing of a high-speed miniature motor for cryogenic cooler’, Int. J. Rotating Mach., 2009, 2009, Article ID 936251, pp. 19.
    8. 8)
      • 92. Jahns, T.M.: ‘The expanding role of PM machines in direct-drive applications’. IEEE 2011 Int. Conf. Electrical Machines and Systems (ICEMS), 2011, pp. 16.
    9. 9)
      • 2. Cao, W., Mecrow, B.C., Atkinson, G.J., et al: ‘Overview of electric motor technologies used for more electric aircraft (MEA)’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 35233531.
    10. 10)
      • 72. Soong, W.L., Kliman, G.B., Johnson, R.N., et al: ‘Novel high-speed induction motor for a commercial centrifugal compressor’, IEEE Trans Ind. Appl., 2000, 36, (3), pp. 706713.
    11. 11)
      • 94. Gieras, J.F., Wang, R.-J., Kamper, M.J.: ‘Axial flux permanent magnet brushless machines’ (Springer Science & Business Media, New York, NY, USA, 2008).
    12. 12)
      • 84. Ferreira, C.A., Jones, S.R., Heglund, W.S., et al: ‘Detailed design of a 30-kW switched reluctance starter/generator system for a gas turbine engine application’, IEEE Trans. Ind. Appl., 1995, 31, (3), pp. 553561.
    13. 13)
      • 39. Sadey, D.J., Bodson, M., Csank, J., et al: ‘Control demonstration of multiple doubly-fed induction motors for hybrid electric propulsion’. 53rd AIAA/SAE/ASEE Joint Propulsion Conf., AIAA Propulsion and Energy Forum, Paper No. AIAA 2017-4954.
    14. 14)
      • 46. http://www.sineton.com/web/index-9.html.
    15. 15)
      • 43. http://www.jobymotors.com/public/views/pages/products.php.
    16. 16)
      • 98. O'Connell, T.C., Wells, J.R., Watts, O.A.: ‘A lumped parameter off-axis-capable dynamic switched reluctance machine model including unbalanced radial forces’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 161174.
    17. 17)
      • 18. Trawick, D., Perullo, C., Armstrong, M., et al: ‘Development and application of GT-HEAT for the electrically variable engine(™) design’. 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, 2017, Paper No. AIAA 2017-1922.
    18. 18)
      • 44. Rimfire Outer Brushless Motors: http://www.electrifly.com/motors/gpmg4505.html.
    19. 19)
      • 51. Mekhiche, M., Kirtley, J.L., Tolikas, M., et al: ‘High speed motor drive development for industrial applications’. IEEE 1999 Int. Conf. Electric Machines and Drives (IEMD'99), 1999, pp. 244248.
    20. 20)
      • 30. Greitzer, E.M., Bonnefoy, P.A., De la Rosa Blanco, E., et al: ‘N + 3 aircraft concept designs and trade studies’. Final Report Volume 1. Report No. NASA/CR-2010-216794/VOL1, 2010.
    21. 21)
      • 91. van der Geest, M., Polinder, H., Ferreira, J.A., et al: ‘Power density limits and design trends of high-speed permanent magnet synchronous machines’, IEEE Trans. Transp. Electrif., 2015, 1, (3), pp. 266276.
    22. 22)
      • 26. Kim, H.D., Felder, J.L., Tong, M.T., et al: ‘Revolutionary aeropropulsion concept for sustainable aviation: turboelectric distributed propulsion’. Proc. XXI Int. Symp. Air Breathing Engines (ISABE 2013): Challenges in Technology Innovation: Global Collaboration, Busan, Korea, 9–13 September 2013, Paper No. ISABE-2013-1719.
    23. 23)
      • 99. Lipo, T.A.: ‘Introduction to AC machine design’ (Wisconsin Power Electronics Research Center, University of Wisconsin, Madison, WI, USA, 2004).
    24. 24)
      • 88. Garrigan, N.R., Soong, W.L., Stephens, C.M., et al: ‘Radial force characteristics of a switched reluctance machine’. IEEE Thirty-Fourth IAS Annual Meeting, Conf. Record of the 1999, Industry Applications Conf., 1999, vol. 4, pp. 22502258.
    25. 25)
      • 103. Binder, A., Schneider, T.: ‘High-speed inverter-fed AC drives’. IEEE 2007 Int. Aegean Conf. Electric machines and Power Electronics (ACEMP'07), 2007.
    26. 26)
      • 21. Goodrich, K., Mark, M.: ‘On-demand mobility (ODM) technical pathway: enabling ease of use and safety’. Report No. NF-1676L-20253, 2015. Available at ntrs.nasa.gov, accessed 13 September 2017.
    27. 27)
      • 35. Gemin, P., Kupiszewski, T., Radun, A., et al: ‘Architecture, voltage and components for a turboelectric distributed propulsion electric grid (AVC-TeDP)’. Report No. NASA/CR-2015-218713.
    28. 28)
      • 101. Gerada, D., Mebarki, A., Brown, N.L., et al: ‘High-speed electric machines: technologies, trends, and developments’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29462959.
    29. 29)
      • 16. Felder, J.L: ‘NASA electric propulsion system studies’. Report No. GRC-E-DAA-TN28410, 2015, Available at ntrs.nasa.gov, accessed 16 March 2017.
    30. 30)
      • 4. Burress, T.A., Campbell, S.L., Coomer, C., et al: ‘Evaluation of the 2010 Toyota Prius hybrid synergy drive system’. Report No. ORNL/TM-2010/253.
    31. 31)
      • 9. Remy Electric Motors: ‘REMY HVH410-075-DOM ELECTRIC MOTOR brochure’, 2011, Available at https://cdn.borgwarner.com/docs/default-source/default-document-library/remy-pds---hvh410-150-sheet-euro-pr-3-16.pdf?sfvrsn=7.
    32. 32)
      • 85. Ferreira, C.A., Jones, S.R., Heglund, W.S.: ‘Performance evaluation of a switched reluctance starter/generator system under constant power and capacitive type loads’. 1995 Tenth Annual Conf. Proc. Applied Power Electronics Conf. and Exposition (APEC'95 1995), 1995, pp. 416424.
    33. 33)
      • 28. Welstead, J.R., Felder, J.L.: ‘Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion’. AIAA SciTech Conf., American Institute of Aeronautics and Astronautics, San Diego, California, USA, 4–8 January 2016, Paper No. AIAA-2016-1027.
    34. 34)
      • 36. Jansen, R.H., et al: ‘Turboelectric aircraft drive key performance parameters and functional requirements’. AIAA Propulsion and Energy Conf., American Institute of Aeronautics and Astronautics, Orlando, FL, 2015, Paper No. AIAA-2015-3890.
    35. 35)
      • 37. Jansen, R., Duffy, K.P., Brown, G.: ‘Partially turboelectric aircraft drive key performance parameters’. 53rd AIAA/SAE/ASEE Joint Propulsion Conf., AIAA Propulsion and Energy Forum, Paper No. AIAA 2017-4702.
    36. 36)
      • 63. http://www.enstroj.si/Electric-products/emrax-motorsgenerators.html.
    37. 37)
      • 52. Wang, Y., Xuhui, W., Zhang, L., et al: ‘Design and experimental verification of high power density interior permanent magnet motors for underwater propulsions’. IEEE 2011 Int. Conf. Electrical Machines and Systems (ICEMS), 2011, pp. 16.
    38. 38)
      • 83. Ferreira, C.A., Jones, S.R., Drager, B.T., et al: ‘Design and implementation of a five-hp, switched reluctance, fuel-lube, pump motor drive for a gas turbine engine’, IEEE Trans. Power Electron., 1995, 10, (1), pp. 5561.
    39. 39)
      • 75. Pyrhönen, J., Nerg, J., Kurronen, P., et al: ‘High-speed high-output solid-rotor induction-motor technology for gas compression’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 272280.
    40. 40)
      • 90. Gieras, J.F.: ‘Multimegawatt synchronous generators for airborne applications: a review’. 2013 Int. Electric Machines & Drives Conf., 2013.
    41. 41)
      • 60. Mecrow, B.C., Jack, A.G., Atkinson, D.J., et al: ‘Design and testing of a four-phase fault-tolerant permanent-magnet machine for an engine fuel pump’, IEEE Trans. Energy Convers., 2004, 19, (4), pp. 671678.
    42. 42)
      • 48. Remy HVH250 Application Manual.
    43. 43)
      • 10. Siemens AG: ‘Siemens develops world-record electric motor for aircraft’, 2015, Reference number: PR2015030156COEN. Available at https://www.siemens.com/press/en/feature/2015/corporate/2015-03-electromotor.php?content[]=Corp.
    44. 44)
      • 41. Zhang, X., Haran, K.S.: ‘High-specific-power electric machines for electrified transportation applications-technology options’. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 18.
    45. 45)
      • 102. Tenconi, A., Vaschetto, S., Vigliani, A.: ‘Electric machines for high-speed applications: design considerations and tradeoffs’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 30223029.
    46. 46)
      • 77. Gieras, J.F., Saari, J.: ‘Performance calculation for a high-speed solid-rotor induction motor’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 26892700.
    47. 47)
      • 58. Kim, S.-Il., Kim, Y.-K., Lee, G.-H., et al: ‘A novel rotor configuration and experimental verification of interior PM synchronous motor for high-speed applications’, IEEE Trans. Magn., 2012, 48, (2), pp. 843846.
    48. 48)
      • 17. Lents, C.E., Hardin, L.W., Rheaume, J., et al: ‘Parallel hybrid gas-electric geared turbofan engine conceptual design and benefits analysis’. 52nd AIAA/SAE/ASEE Joint Propulsion Conf., AIAA Propulsion and Energy Forum, 2016, Paper No. AIAA 2016-4610.
    49. 49)
      • 40. Bowman, R.: ‘NASA Glenn Research Center private communication’, March 2014.
    50. 50)
      • 93. Atkinson, G.J., Mecrow, B.C., Jack, A.G., et al: ‘The analysis of losses in high-power fault-tolerant machines for aerospace applications’, IEEE Trans. Ind. Appl., 2006, 42, (5), pp. 11621170.
    51. 51)
      • 14. Qu, R., Lipo, T.A.: ‘Sizing equations and power density evaluation of dual-rotor, radial flux, toroidally-wound, permanent-magnet machines’, Proc. IEEE 16th Int. Conf. Electrical Machines (ICEM 2004), Cracow, Poland, 2004.
    52. 52)
      • 1. Sarlioglu, B., Morris, C.T.: ‘More electric aircraft: review, challenges, and opportunities for commercial transport aircraft’, IEEE Trans. Transp. Electrif., 2015, 1, (1), pp. 5464.
    53. 53)
      • 82. Radun, A.V.: ‘High power density switched reluctance motor drive for aerospace applications’. IEEE Conf. Record of the 1989 Annual Meeting Industry Applications Society, 1989, pp. 568573.
    54. 54)
      • 8. Marathon Motors: ‘Product catalog 2014: commercial and industrial SB300’, 2014, Available at http://www.marathonelectric.com/docs/2014-SB300.pdf.
    55. 55)
      • 42. http://www.thingap.com/standard-products/.
    56. 56)
      • 66. http://www.launchpnt.com/portfolio/aerospace/electric-machines-for-propulsion/.
    57. 57)
      • 62. Haylock, J.A., Mecrow, B.C., Jack, A.G., et al: ‘Operation of a fault tolerant PM drive for an aerospace fuel pump application’, IEE Proc. Electric Power Appl., 1998, 145, (5), pp. 441448.
    58. 58)
      • 54. Raimondi, G.M., Sawata, T., Holme, M., et al: ‘Aircraft embedded generation systemsIET Int. Conf. Power Electronics, Machines and Drives, 2002 (Conf. Publ. No. 487), 2002, pp. 217222.
    59. 59)
      • 50. https://www.siemens.com/press/pool/de/events/2013/industry/2013-03-hannovermesse-pk/expert-talk-inside-e-car-e.pdf.
    60. 60)
      • 5. Jayasinghe, S.G., Meegahapola, L., Fernando, N., et al: ‘Review of ship microgrids: system architectures, storage technologies and power quality aspects’, Inventions, 2017, 2, p. 4.
    61. 61)
      • 31. Seitz, A., Isikveren, A.T., Hornung, M.: ‘Pre-concept performance investigation of electrically powered aero-propulsion systems’. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Joint Propulsion Conf., Paper No. AIAA 2013-3608.
    62. 62)
      • 71. Chino, S., Ogasawara, S., Miura, T., et al: ‘Fundamental characteristics of a ferrite permanent magnet axial gap motor with segmented rotor structure for the hybrid electric vehicle’. 2011 IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 28052811.
    63. 63)
      • 74. Kim, Y.-K., Choi, M.-C., Suh, K.-H., et al: ‘High-speed induction motor development for small centrifugal compressor’. IEEE 2001 Proc. Fifth Int. Conf. Electrical Machines and Systems (ICEMS 2001), 2001, vol. 2, pp. 891894.
    64. 64)
      • 89. Hammond, E.F., Neff, W.S., Shilling, W.J.: ‘A 2.5-MVA highvoltage lightweight generator’, J. Aircr., 1979, 16, (1), pp. 5561.
    65. 65)
      • 12. Huang, S., Luo, J., Leonardi, F., et al: ‘A general approach to sizing and power density equations for comparison of electric machines’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 9297.
    66. 66)
      • 73. Thelen, R.F., Gattozzi, A., Wardell, D., et al: ‘A 2-MW motor and ARCP drive for high-speed flywheel’. Proc. IEEE 22nd Annual Appl. Power Electron. Conf. (APEC 2007), Anaheim, CA, 2007, pp. 16901694.
    67. 67)
      • 104. Borisavljevic, A., Polinder, H., Ferreira, J.A.: ‘On the speed limits of permanent-magnet machines’, IEEE Trans. Ind. Electron., 2010, 1, (57), pp. 220227.
    68. 68)
      • 55. Zheng, L., Wu, T.X., Acharya, D., et al: ‘Design of a superhigh-speed cryogenic permanent magnet synchronous motor’, IEEE Trans. Magn., 2005, 41, (10), pp. 38233825.
    69. 69)
      • 96. Yi, X., Yoon, A., Haran, K.S.: ‘Multi-physics optimization for high-frequency air-core permanent-magnet motor of aircraft application’., 2017 IEEE Int. Electric Machines and Drives Conf. (IEMDC), 2017, pp. 18.
    70. 70)
      • 20. Haller, B.: ‘Overview of subsonic fixed wing project: technical challenges for energy efficient, environmentally compatible subsonic transport aircraft’. 3rd NASA Glenn Propulsion Control & Diagnostics Workshop, Cleveland, OH, 28 February 2012.
    71. 71)
      • 6. Brown, G.V.: ‘Efficient flight-weight electric systems’. Presented at the Fifth Fundamental Aeronautics Program Technical Conf., Cleveland, OH, 2012.
    72. 72)
      • 106. van Millingen, R.D., van Millingen, J.D.: ‘Phase shift torquemeters for gas turbine development and monitoring’. Proc. Int. Gas Turbine Aeroengine Congress and Exhibition, June 1991, pp. 110.
    73. 73)
      • 11. Yoon, A., Yi, X., Martin, J., et al: ‘A high-speed, high-frequency, air-core PM machine for aircraft application’. IEEE Power and Energy Conf. at Illinois (PECI), 2016.
    74. 74)
      • 25. Rheaume, J.M., Lents, C.E.: ‘Energy storage for commercial hybrid electric aircraft’. SAE 2016 Aerospace Systems and Technology Conf., Hartford, CT, 27–29 September 2016.
    75. 75)
      • 13. Huang, S., Luo, J., Leonardi, F., et al: ‘A comparison of power density for axial flux machines based on general purpose sizing equations’, IEEE Trans. Energy Convers., 1999, 14, (2), pp. 185192.
    76. 76)
      • 15. Haran, K., Kalsi, S., Arndt, T., et al: ‘High power density superconducting rotating machines–development status and technology roadmap’, Supercond. Sci. Technol., 2017, 30, (12), pp. 123002.
    77. 77)
      • 19. ‘NASA Aeronautics Strategic Implementation Plan 2017 Update’. Report No. NP-2017-01-2352-HQ, 2017. Available at www.NASA.gov, accessed 7 September 2017.
    78. 78)
      • 110. El-Refaie, A.M.: ‘Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 107121.
    79. 79)
      • 97. Renner, N.J., Lenz, J.D., Yi, X., et al: ‘Development of form-wound air-core armature windings for high-frequency electric machines’. 2017 IEEE Int. Electric Machines and Drives Conf. (IEMDC), 2017, pp. 18.
    80. 80)
      • 64. http://www.yasamotors.com/products/.
    81. 81)
      • 32. Isikveren, A.T., Pornet, C., Vratny, P.C., et al: ‘Conceptual studies of future hybrid-electric regional aircraft’. Proc. 22nd Int. Symp. Air Breathing Engines, Phoenix, Arizona, 25–30 October 2015, Paper No. ISABE-2015-20285.
    82. 82)
      • 100. Rahman, Md.A., Chiba, A., Fukao, T.: ‘Super high speed electric machines-summary’. 2004 IEEE Power Engineering Society General Meeting, 2004.
    83. 83)
      • 107. Popescu, M., Staton, D., Boglietti, A., et al: ‘Modern heat extraction systems for electrical machines – a review’. 2015 IEEE Workshop Electrical Machines Design, Control and Diagnosis (WEMDCD), 2015, pp. 289296.
    84. 84)
      • 57. Munteanu, G., Binder, A., Schneider, T., et al: ‘No-load tests of a 40 kW high-speed bearingless permanent magnet synchronous motor’. IEEE 2010 Int. Symp. Power Electronics Electrical Drives Automation and Motion (SPEEDAM), 2010, pp. 14601465.
    85. 85)
      • 23. Mavris, D.N., Pfaender, H., Jimenez, H., et al: ‘Application of strategic planning process with fleet level analysis methods – final report’. Report No. NASA/CR-2016-219200, 2016.
    86. 86)
      • 34. Armstrong, M.J., Blackwelder, M., Bollman, A., et al: ‘Architecture, voltage, and components for a turboelectric distributed propulsion electric grid final report’. Report No. NASA/CR-2015-218440.
    87. 87)
      • 79. Gessese, Y., Binder, A., Funieru, B: ‘Analysis of the effect of radial rotor surface grooves on rotor losses of high speed solid rotor induction motor’. Proc. IEEE 2010 Int. Symp. Power Electronics Electrical Drives Automation and Motion (SPEEDAM 2010), Pisa, Italy, 2010, pp. 17621767.
    88. 88)
      • 87. Radun, A.V., Ferreira, C.A., Richter, E.: ‘Two-channel switched reluctance starter/generator results’, IEEE Trans. Ind. Appl., 1998, 34, (5), pp. 10261034.
    89. 89)
      • 65. http://www.evo-electric.com/inc/files/AFM-240-Spec-Sheet-V1.1.pdf.
    90. 90)
      • 22. Madavan, N.: ‘Hybrid-electric and distributed propulsion technologies for large commercial air transports: a NASA perspective’. Report No. ARC-E-DAA-TN27231. Available at ntrs.nasa.gov, accessed 11 September 2017.
    91. 91)
      • 108. Tong, W.: ‘Mechanical design of electric motors’ (CRC Press, 2014), Chapter 8: Motor Cooling.
    92. 92)
      • 95. Sanchez, R., Yoon, A., Yi, X., et al: ‘Mechanical validation of high power density external cantilevered rotor’. 2017 IEEE Int. Electric Machines and Drives Conf. (IEMDC), 2017, pp. 18.
    93. 93)
      • 86. Richter, E., Ferreira, C.: ‘Performance evaluation of a 250 kW switched reluctance starter generator’. IEEE 1995 Record of the 1995, Thirtieth IAS Annual Meeting Conf., Industry Applications Conf. (IAS'95 1995), 1995, vol. 1, pp. 434440.
    94. 94)
      • 78. Gessese, Y., Binder, A.: ‘Axially slitted, high-speed solid-rotor induction motor technology with copper end-rings’. Proc. IEEE Int. Conf. Electrical Machines and Systems (ICEMS 2009), Tokyo, Japan, Nov. 15–18, 2009, pp. 16.
    95. 95)
      • 45. http://www.lange-aviation.com/.
    96. 96)
      • 7. National Academies of Sciences, Engineering, and Medicine: ‘Commercial aircraft propulsion and energy systems research: reducing global carbon emissions’ (The National Academies Press, Washington, DC, 2016).
    97. 97)
      • 70. Miura, T., Chino, S., Takemoto, M., et al: ‘A ferrite permanent magnet axial gap motor with segmented rotor structure for the next generation hybrid vehicle’. IEEE 2010 XIX Int. Conf. Electrical Machines (ICEM), 2010, pp. 16.
    98. 98)
      • 67. http://cafefoundation.org/v2/pdf_tech/MPG.engines/HE_HP_electric_motors_Long_20090929.pdf.
    99. 99)
      • 29. Jansen, R., Bowman, C., Jankovsky, A.: ‘Sizing power components of an electrically driven tail cone thruster and a range extender’. 16th AIAA Aviation Technology, Integration, and Operations Conf., AIAA AVIATION Forum, Paper No. AIAA 2016-3766.
    100. 100)
      • 81. MacMinn, S.R., Jones, W.D.: ‘A very high speed switched-reluctance starter-generator for aircraft engine applications’. Proc. IEEE 1989 National Aerospace and Electronics Conf., 1989 (NAECON 1989), 1989, pp. 17581764.
    101. 101)
      • 68. Crescimbini, F., Di Napoli, A., Solero, L., et al: ‘Compact permanent-magnet generator for hybrid vehicle applications’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 11681177.
    102. 102)
      • 61. http://www.maxxprod.com/mpi/mpi-2601.html.
    103. 103)
      • 76. Pyrhonen, J., Nerg, J., Kurronen, P., et al: ‘High-speed, 8 MW, solid-rotor induction motor for gas compression’. IEEE 18th Int. Conf. Electric Machines, 2008 (ICEM 2008), 2008, pp. 16.
    104. 104)
      • 109. Gieras, J.F.: ‘Advancements in electric machines’ (Springer Science & Business Media, New York, NY, USA, 2008), Chapter 3: high power density machines.
    105. 105)
      • 3. O'Connell, T.: ‘Fundamentals of more electric aircraft design’. Tutorial Presented at the IEEE Transportation Electrification Conf. (ITEC), Chicago, IL, 2017.
    106. 106)
      • 49. http://www.proteanelectric.com/specifications/.
    107. 107)
      • 80. Hofmann, H., Sanders, S.R.: ‘High-speed synchronous reluctance machine with minimized rotor losses’, IEEE Trans. Ind. Appl., 2000, 36, (2), pp. 531539.
    108. 108)
      • 105. Moghaddam, R.R.: ‘High speed operation of electric machines, a review on technology, benefits and challenges’, IEEE Energy Conversion Congress and Exposition (ECCE), 2014.
    109. 109)
      • 38. Sadey, D.J., Taylor, L., Beach, R.: ‘Proposal and development of a high voltage variable frequency alternating current power system for hybrid electric aircraft’. 14th Int. Energy Conversion Engineering Conf., AIAA Propulsion and Energy Forum, Paper No. AIAA 2016-4928.
    110. 110)
      • 33. Armstrong, M., Ross, C., Phillips, D., et al: ‘Stability, transient response, control, and safety of a high-power electric grid for turboelectric propulsion of aircraft’. Report No. NASA/CR-2013-217865.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0639
Loading

Related content

content/journals/10.1049/iet-epa.2017.0639
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address