http://iet.metastore.ingenta.com
1887

Wide regulated series hybrid excitation alternator

Wide regulated series hybrid excitation alternator

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Parallel hybrid excitation alternators (PHEAs) are large in size but offers wide flux regulation capability. Series hybrid excitation alternator has limited flux regulation capability but compact compared to PHEAs. A new rotor excitation topology has been proposed for a series hybrid rotor excitation alternator (SHREA). The proposed machine is not only small in size but also have wide flux regulation capability. The proposed machine can be classified as a series hybrid machine as permanent magnets and field windings are arranged in a single rotor ensuring series addition of permanent magnet flux and field winding flux. In this study, one more rotor configuration for quick maintenance SHREA is also proposed. As the name suggests, for any fault in excitation winding, they can be easily replaced. Two 1.3 kW prototypes with such designs have been validated with finite-element method simulation and hardware testing.

References

    1. 1)
      • 1. Zhang, Q., Huang, S., Xie, G.: ‘Design and experimental verification of hybrid excitation machine with isolated magnetic paths’, IEEE Trans. Energy Convers., 2010, 25, (4), pp. 9931000.
    2. 2)
      • 2. Zhang, Z., Yan, Y., Yang, S., et al: ‘Principle of operation and feature investigation of a new topology of hybrid excitation synchronous machine’, IEEE Trans. Magn., 2008, 44, (9), pp. 21742180.
    3. 3)
      • 3. Afinowi, A.A., Zhu, Z.Q., Guan, Y., et al: ‘Hybrid-excited doubly salient synchronous machine with permanent magnets between adjacent salient stator Poles’, IEEE Trans. Magn., 2015, 51, (10). Article No. 8107909.
    4. 4)
      • 4. Fu, X., Li, X., Xu, D., et al: ‘Iron loss in permanent magnet-inductor hybrid excitation synchronous generator’, IEEE Trans. Magn., 2014, 50, (1), Article No. 4002504.
    5. 5)
      • 5. Lu, J., Wang, D.: ‘Research on voltage regulation range of the hybrid excitation permanent magnet generator’, Electrical and Control Engineering (ICECE) IEEE Con., Yichang, China, 2011, pp. 803806.
    6. 6)
      • 6. Wang, Y., Deng, Z.: ‘Parallel hybrid excitation machines and their control schemes for DC generation system’, IET Electr. Power Appl., 2012, 6, (9), pp. 669680.
    7. 7)
      • 7. Naoe, N., Fukami, T.: ‘Trial production of a hybrid excitation type synchronous machine’. Proc. Int. Con. on Electrical Machines and Drives (IEMDC), Cambridge, USA, August 2001, pp. 545547.
    8. 8)
      • 8. Owen, R., Zhu, Z.Q., Wang, J.B., et al: ‘Review of variable-flux permanent magnet machines’. Proc. ICEMS, August 2011, pp. 16.
    9. 9)
      • 9. Gieras, J.F.: ‘PM synchronous generator with hybrid excitation system and voltage control capabilities: A review’. Proc. ICEM, September 2012, pp. 25732579.
    10. 10)
      • 10. Mizuno, T., Nagayama, K., Ashikaga, T., et al: ‘Basic principles and characteristics of hybrid excitation synchronous machine’, Electr. Eng. Jpn., 1996, 117, (5), pp. 110122.
    11. 11)
      • 11. Luo, X., Lipo, T.A.: ‘A synchronous/permanent magnet hybrid ac machine’, IEEE Trans. Energy Convers., 2000, 15, (2), pp. 203210.
    12. 12)
      • 12. Liu, X., Zhu, Z.Q., Yang, C., et al: ‘A novel dual-stator hybrid excited synchronous wind generator’, IEEE Trans. Ind. Appl., 2009, 45, (3), pp. 947953.
    13. 13)
      • 13. Boldea, I., Coroban-Schramel, V., Andreescu, G.D., et al: ‘BEGA starter/alternator vector control implementation and performance for wide speed range at unity power factor operation’, IEEE Trans. Ind. Appl., 2010, 46, (1), pp. 150158.
    14. 14)
      • 14. Fodorean, D., Djerdir, A., Viorel, I.A., et al: ‘A double excited synchronous machine for direct drive application-design and prototype tests’, IEEE Trans. Energy Convers., 2007, 22, (3), pp. 656665.
    15. 15)
      • 15. Mudhigollam, U.K., Choudhury, U., Hatua, K.: ‘A new rotor excitation topology for hybrid excitation machine’. Proceeding of IEEE Int. Conf. on Power Electronics, Drives and Energy Systems, PEDES-2016, Trivandrum, India, December 2016, pp. 16.
    16. 16)
      • 16. Schofield, N., Al-Adsani, A.: ‘Operation of a hybrid PM generator in a series hybrid EV power-train’. Proc. Int. Con. on Vehicle Power and Propulsion Conf. (VPPC), Chicago, Illinois, USA, September 2011, pp. 16.
    17. 17)
      • 17. Zhu, X., Cheng, M., Hua, W., et al: ‘Design and analysis of a new hybrid excited doubly salient machine capable of field control’. Conf. Rec. IEEE IAS Annu. Meeting, Tampa, FL, USA, 2006, vol. 5, pp. 23822389.
    18. 18)
      • 18. Hsu, J.S.: ‘Direct control of air-gap flux in permanent-magnet machines’, IEEE trans. Energy Convers.., 2000, 15, (4), pp. 361365.
    19. 19)
      • 19. Aydin, M., Huang, S., Lipo, T.A: ‘Design, analysis and control of a hybrid field-controlled axial-flux permanent-magnet motor’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 7887.
    20. 20)
      • 20. Giulii Capponi, F., De Donato, G., Borocci, G., et al: ‘Axial-flux hybrid-excitation synchronous machine: analysis, design and experimental evaluation’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 31733184.
    21. 21)
      • 21. Xinghe, F., Jibin, Z.: ‘Numerical analysis on the magnetic field of hybrid exciting synchronous generator’, IEEE Trans. Magn., 2009, 45, (10), pp. 45904593.
    22. 22)
      • 22. Druant, J., Vansompel, H., De Belie, F., et al: ‘Torque analysis on a double rotor electrical variable transmission with hybird excitation’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 6068.
    23. 23)
      • 23. Zhang, Z., Ma, S., Dai, J., et al: ‘Investigation of hybrid excitation synchronous machines with axial auxialiary air-gaps and non-uniform air-gaps’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 17291737.
    24. 24)
      • 24. Amara, Y., Hlioui, S., Belfkira, R., et al: ‘Comparison of open circuit flux control capability of a series double excitation machine and a parallel double excitation machine’, IEEE Trans. Veh. Technol., 2011, 60, (9), pp. 41944207.
    25. 25)
      • 25. Dha, Z., Chaohui, Z., Lie, Z., et al: ‘On hybrid excitation claw pole synchronous generator with magnetic circuit series connection’. Proc. Int. Con. on Electrical Machines and Systems (ICEMS), Wuhan, China, October 2008, pp. 35093513.
    26. 26)
      • 26. Finken, T., Hameyer, K.: ‘Study of hybrid excited synchronous alternators for automotive applications using coupled FE and circuit simulations’, IEEE Trans. Magn., 2008, 44, (6), pp. 15981601.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0452
Loading

Related content

content/journals/10.1049/iet-epa.2017.0452
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address