access icon free Analysis of parasitic effects in carrier signal injection methods for sensorless control of PM synchronous machines

This study presents the parasitic effects on different carrier signal injection methods with alternative sensing signals for the sensorless control of permanent magnet synchronous machines (PMSMs). The different carrier injection methods are the rotating injection in the stationary reference frame with carrier current sensing and with zero-sequence carrier voltage sensing, the pulsating injection in the estimated synchronous reference frame with carrier current sensing, and pulsating injection in the anti-rotating reference frame with zero-sequence carrier voltage sensing, respectively. The parasitic effects, e.g. the magnetic saturation, inverter non-linearity, iron and PM losses, torque ripple etc. will be fully analysed and compared for these different injection methods. All the theoretical analyses are validated by either finite-element analyses or experiments on a laboratory PM machine.

Inspec keywords: synchronous machines; finite element analysis; permanent magnet machines; sensorless machine control

Other keywords: finite-element analysis; inverter nonlinearity; sensing signals; carrier current sensing; carrier signal injection method; parasitic effects; zero-sequence carrier voltage sensing; permanent magnet synchronous machines; stationary reference frame; laboratory PM machine; pulsating injection; PM synchronous machines; sensorless control; torque ripple

Subjects: Finite element analysis; Synchronous machines; Control of electric power systems; Finite element analysis

References

    1. 1)
      • 7. Gong, L.M., Zhu, Z.Q.: ‘A novel method for compensating inverter nonlinearity effects in carrier signal injection-based sensorless control from positive-sequence carrier current distortion’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 557565.
    2. 2)
      • 12. Raca, D., Garcia, P., Reigosa, D., et al: ‘A comparative analysis of pulsating vs. rotating vector carrier signal injection-based sensorless control’. Proc. 23rd Annual IEEE APEC, 2008, pp. 879885.
    3. 3)
      • 19. Bianchi, N., Bolognami, S., Jang, J.H., et al: ‘Comparison of PM motor structures and sensorless control techniques for zero-speed rotor position detection’, IEEE Trans. Power Electron., 2007, 22, (6), pp. 24662475.
    4. 4)
      • 3. Holtz, J., Juliet, J.: ‘Sensorless acquisition of the rotor position angle of induction motors with arbitrary stator windings’, IEEE Trans. Ind. Appl., 2005, 41, (6), pp. 16751682.
    5. 5)
      • 15. Jang, J.H., Sul, S.K., Ha, J.I., et al: ‘Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 10311039.
    6. 6)
      • 13. Raca, D., Garcia, P., Reigosa, D., et al: ‘Carrier signal selection for sensorless control of PM synchronous machines at zero and very low speeds’. Conf. Record 43rd IEEE IAS Annual Meeting, 2008, pp. 18.
    7. 7)
      • 9. Briz, F., Degner, M.W., García, P., et al: ‘Comparison of saliency-based sensorless control techniques for AC machines’, IEEE Trans. Ind. Appl., 2004, 40, (4), pp. 11071115.
    8. 8)
      • 23. Yang, S.C., Lorenz, R.D.: ‘Analysis of iron and magnet losses in surface-permanent-magnet machines resulting from injection-based self-sensing position estimation’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 19011910.
    9. 9)
      • 20. Xu, P.L., Zhu, Z.Q.: ‘Novel carrier signal injection method using zero sequence voltage for sensorless control of PMSM drives’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 20532061.
    10. 10)
      • 11. Kim, H., Lorenz, R.D.: ‘Carrier signal injection based sensorless control methods for IPM synchronous machine drives’. Proc. IEEE IAS Annual Meeting, October 2004, vol. 2, pp. 977984.
    11. 11)
      • 8. Garcia, P., Briz, F., Degner, M.W., et al: ‘Accuracy, bandwidth, and stability limits of carrier-signal- injection- based sensorless control methods’, IEEE Trans. Ind. Appl., 2007, 43, (4), pp. 9901000.
    12. 12)
      • 1. Schroedl, M.: ‘Sensorless control of AC machines at low speed and standstill based on the ‘INFORM’ method’. Conf. Record IEEE IAS Annual Meeting, 1996, pp. 270277.
    13. 13)
      • 6. Guerrero, J.M., Leetmaa, M., Briz, F., et al: ‘Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods’, IEEE Trans. Ind. Appl., 2005, 41, (2), pp. 618626.
    14. 14)
      • 25. Wang, G.L., Qu, L.Z., Zhan, H.L., et al: ‘Self-commissioning of permanent magnet synchronous machine drives at standstill considering inverter nonlinearities’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 66156627.
    15. 15)
      • 5. Degner, M.W., Lorenz, R.D.: ‘Using multiple saliencies for the estimation of flux, position, and velocity in ac machines’, IEEE Trans. Ind. Appl., 1998, 34, (5), pp. 10971104.
    16. 16)
      • 14. Cupertino, F., Guagnano, A., Altomare, A., et al: ‘Position estimation delays in signal injection-based sensorless PMSM drives’. Proc. IEEE SLED 2012 Symp., 2012, pp. 16.
    17. 17)
      • 17. Li, Y., Zhu, Z.Q., Howe, D., et al: ‘‘Improved rotor position estimation by signal injection in brushless AC motors, accounting for cross-coupling magnetic saturation’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 18431849.
    18. 18)
      • 10. Briz, F., Degner, M.W., García, P., et al: ‘Rotor position estimation of AC machines using the zero sequence carrier signal voltage’, IEEE Trans. Ind. Appl., 2005, 41, (6), pp. 16371646.
    19. 19)
      • 21. Xu, P.L., Zhu, Z.Q.: ‘Comparison of carrier signal injection methods for sensorless control of PMSM drives’. Conf. Energy Conversion Congress & Exposition (ECCE), 2015, pp. 56165623.
    20. 20)
      • 2. Leidhold, R.: ‘Position sensorless control of PM synchronous motors based on zero-sequence carrier injection’, IEEE Trans. Ind. Electron., 2011, 58, (12), pp. 53715379.
    21. 21)
      • 4. Jansen, P.L., Lorenz, R.D.: ‘Transducerless position and velocity estimation in induction and salient ac machines’, IEEE Trans. Ind. Appl., 1995, 31, (2), pp. 240247.
    22. 22)
      • 26. Bianchi, N., Bolognani, S., Pré, M.D., et al: ‘Design considerations for fractional-slot winding configurations of synchronous machines’, IEEE Trans. Ind. Appl., 2006, 42, (4), pp. 9971006.
    23. 23)
      • 16. Guglielmi, P., Pastorelli, M., Vagati, A.: ‘Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors’, IEEE Trans. Ind. Electron., 2006, 53, (2), pp. 429439.
    24. 24)
      • 27. Reigosa, D., Briz, F., Degner, M.W., et al: ‘Temperature issues in saliency-tracking based sensorless methods for PM synchronous machines’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 13521360.
    25. 25)
      • 18. Zhu, Z.Q., Gong, L.M.: ‘Investigation of effectiveness of sensorless operation in carrier-signal-injection-based sensorless-control methods’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 34313439.
    26. 26)
      • 22. Choi, C.H., Seok, J.K.: ‘Pulsating signal injection-based axis switching sensorless control of surface-mounted permanent-magnet motors for minimal zero-current clamping effects’, IEEE Trans. Ind. Appl., 2008, 44, (6), pp. 17411748.
    27. 27)
      • 24. Chu, W.Q., Zhu, Z.Q.: ‘Average torque separation in permanent magnet synchronous machines using frozen permeability’, IEEE Trans. Magn., 2013, 49, (3), pp. 12021210.
    28. 28)
      • 28. Ishak, D., Zhu, Z.Q., Howe, D.: ‘Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole’, IEEE Trans. Magn., 2005, 41, (9), pp. 24622469.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0323
Loading

Related content

content/journals/10.1049/iet-epa.2017.0323
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading