access icon free Combined commutation optimisation strategy for brushless DC motors with misaligned hall sensors

Brushless direct current (BLDC) motors with Hall sensors are widely used in various applications. Installation errors for Hall sensors may lead to inaccuracy regarding the commutation position, which can lower the motor efficiency. To improve the performance of the BLDC motors, this study presents a new combined commutation optimisation strategy for obtaining the ideal commutation position. The new strategy consists of two procedures: averaging the misaligned Hall signals and compensating for the averaged Hall signals. A mathematical relationship between the DC-link current and overall deviation error was established, and a proportional-integral controller was built to compensate the commutation position. Several experiments were conducted to verify the effectiveness of the new combined commutation optimisation strategy.

Inspec keywords: Hall effect transducers; mathematical analysis; commutation; PI control; optimisation; brushless DC motors

Other keywords: BLDC motor; averaged Hall signal compensation; commutation position; brushless direct current motor; combined commutation optimisation strategy; proportional-integral controller; misaligned Hall sensor; mathematical relationship; DC-link current; misaligned Hall signal

Subjects: d.c. machines; Optimisation techniques; Mathematical analysis; Bulk effect devices; Sensing devices and transducers

References

    1. 1)
      • 21. Wei, K., Lou, Z., Zhang, Z.: ‘Estimate of rotor position of BDCM based on the third harmonic component’. 4th Int. Power Electronics and Motion Control Conf., Xi'an, China, August 2004, vol. 24, issue 5, pp. 163167.
    2. 2)
      • 7. Pillay, P., Krishnan, R.: ‘Modeling, simulation, and analysis of permanent-magnet motor drives. Part II. The brushless dc motor drive’, IEEE Trans. Ind. Appl., 1989, 25, (2), pp. 274279.
    3. 3)
      • 12. Alaeinovin, P., Chiniforoosh, S., Jatskevich, J.: ‘Evaluating misalignment of Hall sensors in brushless DC motors’. Electric Power Conf., Vancouver, Canada, October 2008, pp. 16.
    4. 4)
      • 13. Alaeinovin, P., Jatskevich, J.: ‘Filtering of hall-sensor signals for improved operation of brushless DC motors’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 547549.
    5. 5)
      • 11. Nikolay, S., Han, Q., Jatskevich, J.: ‘Dynamic performance of brushless DC motors with unbalanced hall sensors’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 752763.
    6. 6)
      • 19. Wu, X.J., Zhou, B., Song, F.: ‘A new control method to correct position phase for sensorless brushless DC motor’. Int. Conf. on Electrical Machines and Systems, Wuhan, China, October 2008, pp. 5460.
    7. 7)
      • 8. Cui, C.J., Liu, G., Wang, K., et al: ‘Sensorless drive for high-speed brushless DC motor based on the virtual neutral voltage’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 32753285.
    8. 8)
      • 6. Bi, C., Hla, N.P., Jiang, Q., et al: ‘Back-EMF ZCP error induced by electromagnetic structure of spindle motor’, IEEE Trans. Magn., 2011, 47, (7), pp. 18991905.
    9. 9)
      • 15. Li, H., Zheng, S., Ren, H.: ‘Self-correction of commutation point for high-speed sensorless BLDC motor with low inductance and nonideal back EMF’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 642651.
    10. 10)
      • 2. Kumar, R., Singh, B.: ‘Solar PV powered BLDC motor drive for water pumping using Cuk converter’, IET Electr. Power Appl., 2017, 11, (2), pp. 222232.
    11. 11)
      • 17. Samoylenko, N., Han, Q., Jatskevich, J.: ‘Balancing hall-effect signals in low-precision brushless DC motors’. Twenty-second Annual IEEE Applied Power Electronics Conf., Anaheim, CA, February–March 2007, pp. 606611.
    12. 12)
      • 18. Kim, T.H., Mehrdad, E.: ‘An error analysis of the sensorless position estimation for BLDC motors’. 38th IAS Annual Meeting Conf. Record of the Industry Applications Conf., Salt Lake City, UT, October 2003, pp. 611617.
    13. 13)
      • 20. Fang, J., Li, H., Han, B.: ‘Torque ripple reduction in BLDC torque motor with nonideal back EMF’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46304637.
    14. 14)
      • 5. Huang, Y.W., Chapariha, M., Therrien, F., et al: ‘A constant-parameter voltage-behind-reactance synchronous machine model based on shifted-frequency analysis’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 761771.
    15. 15)
      • 16. Lin, M.Y., Li, Q., Gu, W.G.: ‘Effect of rotor position error on commutation in sensorless BLDC motor drives’. Eighth Int. Conf. on Electrical Machines and Systems, Nanjing, China, September 2005, pp. 497499.
    16. 16)
      • 4. Xia, K., Lu, J., Bi, C., et al: ‘Dynamic commutation torque-ripple reduction for brushless DC motor based on quasi-Z-source net’, IET Electr. Power Appl., 2016, 10, (9), pp. 819826.
    17. 17)
      • 1. Krause, P., Wasynczuk, O., Sudhoff, S.D., et al: ‘Analysis of electric machinery and drive systems’ (IEEE Press, Piscataway, NJ, USA, 2013).
    18. 18)
      • 10. Zwyssig, C., Kolar, J.W., Round, S.D.: ‘Megaspeed drive systems: pushing beyond 1 million r/min’, IEEE/ASME Trans. Mechatronics, 2009, 14, (5), pp. 564574.
    19. 19)
      • 9. Damodharan, P., Vasudevan, K.: ‘Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 661668.
    20. 20)
      • 3. Kim, H.S., Kwon, B.I.: ‘Optimal design of motor shape and magnetisation direction to obtain vibration reduction and average torque improvement in IPM BLDC motor’, IET Electr. Power Appl., 2017, 11, (3), pp. 378385.
    21. 21)
      • 14. Alaeinovin, P., Jatskevich, J.: ‘Hall-sensor signals filtering for improved operation of brushless DC motors’. IEEE Int. Symp. on Industrial Electronics, Gdansk, Poland, June 2011, pp. 613618.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0276
Loading

Related content

content/journals/10.1049/iet-epa.2017.0276
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading