access icon free An improved finite-state predictive torque control for switched reluctance motor drive

This study proposes an improved finite-state predictive torque control (FS-PTC) to minimise the torque ripples of switched reluctance motor (SRM) drive. Firstly, based on the accurate analytical method, a discrete time model is established for predicting the future states of SRM drive system. Secondly, to reduce the computational burden, a new switching table is constructed for the predictive controller by using the sector partition technique. Further, the torque ripple, copper losses, and average switching frequency are considered synchronously by using a multi-objective cost function. As a result, the proposed FS-PTC method not only can minimise the torque ripple but also can reduce effectively the copper losses and average switching frequency. Finally, the experimental results are carried out for a three phase 12/8 poles 1.5 kW SRM with the proposed control algorithm and the results are compared with conventional direct instantaneous torque control algorithm. These results demonstrate the effectiveness of the proposed method.

Inspec keywords: discrete time systems; torque control; predictive control; reluctance motor drives; machine control

Other keywords: switched reluctance motor drive; conventional direct instantaneous torque control algorithm; torque ripple minimisation; sector partition technique; improved finite-state predictive torque control; switching table; discrete time model; FS-PTC method; analytical method; multiobjective cost function; copper losses; average switching frequency; three phase 12/8 poles SRM

Subjects: Mechanical variables control; Synchronous machines; Optimal control; Drives; Control of electric power systems; Discrete control systems

References

    1. 1)
      • 16. Sun, J.B., Zhan, Q.H., Wang, S.H., et al: ‘A novel control strategy of switched reluctance motor contributing to low vibration noise and minimal torque ripple’. Proc. 2006 IEEE Int. Symp. Industrial Electronics, Montreal, July 2006, pp. 21632167.
    2. 2)
      • 25. Spong, M.I., Marino, R., Peresada, S.M., et al: ‘Feedback linearizing control of switched reluctance motors’, IEEE Trans. Autom. Control, 1987, 32, (5), pp. 371379.
    3. 3)
      • 14. Fuengwarodsakul, N.H., Menne, M., Inderka, R.B., et al: ‘High-dynamic four quadrant switched reluctance drive based on DITC’, IEEE Trans. Ind. Appl., 2005, 41, pp. 12321242.
    4. 4)
      • 6. Xue, X.D., Cheng, K.W.E., Ho, S.L.: ‘Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives’, IEEE Trans. Power Electron., 2009, 24, (9), pp. 20762090.
    5. 5)
      • 26. Rodríguez, J., Cortés, P.: ‘Predictive control of power converters and electrical drives’ (John Wiley & Sons, New York, 2014).
    6. 6)
      • 21. Villegas, J., Vazquez, S., Carrasco, J.M., et al: ‘Model predictive control of a switched reluctance machine using discrete space vector modulation’. Proc. 2010 IEEE Int. Symp. on Industrial Electronics, Bari, July 2010, pp. 31393144.
    7. 7)
      • 15. Gan, C., Wu, J.H., Sun, Q.G., et al: ‘Low-cost direct instantaneous torque control for switched reluctance motors with bus current detection under soft-chopping mode’, IET Electr. Power Appl., 2016, 9, (3), pp. 482490.
    8. 8)
      • 2. Boldea, I., Tutelea, L.N., Parsa, L., et al: ‘Automotive electric propulsion systems with reduced or no permanent magnets: an overview’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 56965711.
    9. 9)
      • 20. Peyrl, H., Papafotiou, G., Morari, M.: ‘Model predictive torque control of a switched reluctance motor’. Proc. 2009 IEEE Int. Conf. Industrial Technology, Gippsland, February 2009, pp. 16.
    10. 10)
      • 24. Mikail, R., Husain, I., Sozer, Y., et al: ‘A fixed switching frequency predictive current control method for switched reluctance machines’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 37173726.
    11. 11)
      • 9. Kjaer, P.C., Gribble, J.J., Miller, T.J.E.: ‘High-grade control of switched reluctance machines’, IEEE Trans. Ind. Appl., 1997, 33, (6), pp. 15851593.
    12. 12)
      • 4. Choi, C., kim, S., Kim, Y., et al: ‘A new torque control method of a switched reluctance motor using a torque-sharing function’, IEEE Trans. Magn., 2002, 38, (5), pp. 32883290.
    13. 13)
      • 12. Cheok, A.D., Fukuda, Y.: ‘A new torque and flux control method for switched reluctance motor drives’, IEEE Trans. Power Electron., 2002, 17, (4), pp. 543557.
    14. 14)
      • 5. Wang, J.J.: ‘A common sharing method for current and flux-linkage control of switched reluctance motor’, Electr. Power Syst. Res., 2016, 131, pp. 1930.
    15. 15)
      • 27. Wang, F., Li, S., Mei, X., et al: ‘Mode-based predictive direct control strategies for electrical drives: an experimental evaluation of PTC and PCC methods’, IEEE Trans. Ind. Inf., 2015, 11, (3), pp. 671681.
    16. 16)
      • 19. Petrus, V., Pop, A.C., Martis, C.S., et al: ‘Direct instantaneous torque control of SRMs versus current profiling - comparison regarding torque ripple and copper losses’. Proc. 13th Int. Conf. Optimization of Electrical and Electronic Equipment, Brasov, May 2012, pp. 366372.
    17. 17)
      • 8. Vujicic, V.P.: ‘Minimization of torque ripple and copper losses in switched reluctance drive’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 388399.
    18. 18)
      • 1. Vijayakumar, K., Karthikeyan, R., Paramasivam, S., et al: ‘Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review’, IEEE Trans. Magn., 2008, 44, (12), pp. 46054617.
    19. 19)
      • 18. Hu, Y.F., Ding, W.: ‘Study on energy ratio of switched reluctance motor drive base on open loop, CCC and DITC’. Proc. 11th Int. Conf. Ecological Vehicles and Renewable Energies, Monte Carlo, April 2016, pp. 16.
    20. 20)
      • 23. Li, X., Shamsi, P.: ‘Model predictive current control of switched reluctance motors with inductance auto-calibration’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 39343941.
    21. 21)
      • 10. Husain, I.: ‘Minimization of torque ripple in SRM drives’, IEEE Trans. Ind. Electron., 2002, 49, (1), pp. 2839.
    22. 22)
      • 17. Ronanki, D., Williamson, S.S.: ‘Comparative analysis of DITC and DTFC of switched reluctance motor for EV applications’. Proc. 18th IEEE Int. Conf. Industrial Technology, Toronto, March 2017, pp. 509514.
    23. 23)
      • 7. Ye, J., Bilgin, B., Emadi, A.: ‘An offline torque sharing function for torque ripple reduction in switched reluctance motor drives’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 726735.
    24. 24)
      • 11. Lee, D.H., Liang, J., Lee, Z.G., et al: ‘A simple nonlinear logic torque sharing function for low-torque ripple SR drive’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 30213028.
    25. 25)
      • 13. Inderka, R.B., Doncker, R.W.A.A.D.: ‘DITC-Direct instantaneous torque control of switched reluctance drives’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 10461051.
    26. 26)
      • 22. Li, X., Shamsi, P.: ‘Inductance surface learning for model predictive current control of switched reluctance motors’, IEEE Trans. Transp. Elec., 2015, 1, (3), pp. 287297.
    27. 27)
      • 3. Sozer, Y., Husain, I., Torrey, D.A.: ‘Guidance in selecting advanced control techniques for switched reluctance machine drives in emerging applications’, IEEE Trans. Ind. Appl., 2015, 51, (6), pp. 45054514.
    28. 28)
      • 28. Gobbi, R., Sahoo, N.C., Vejian, R.: ‘Experimental investigations on computer-based methods for determination of static electromagnetic characteristics of switched reluctance motors’, IEEE Trans. Instrum. Meas., 2008, 57, (10), pp. 21962211.
    29. 29)
      • 29. Cortés, P., Kouro, S., Rocca, B.L., et al: ‘Guidelines for weighting factors design in model predictive control of power converters and drives’. Proc. 2009 IEEE Int. Conf. Industrial Technology, Gippsland, February 2009, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0268
Loading

Related content

content/journals/10.1049/iet-epa.2017.0268
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading