Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

PMSG-based wind energy conversion systems: survey on power converters and controls

PMSG-based wind energy conversion systems: survey on power converters and controls

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The permanent magnet synchronous generator (PMSG) is dominantly used in the present wind energy market. Reflecting the latest wind energy market trends and research articles, this study presents a survey on important electrical engineering aspects for PMSG-based megawatt-level wind energy conversion systems (WECSs). A comprehensive analysis on power converter topologies for wind turbines (WTs), grid integration of wind farms, digital control schemes, fault-ride-through compliance methods, and future trends is presented. The updated market share, technology trends, WT products information, in-depth technical analysis, and promising research works highlighted in this study will help the reader to understand the state-of-the-art and emerging technologies for PMSG-based WECS.

References

    1. 1)
      • 1. Yaramasu, V., Wu, B.: ‘Model predictive control of wind energy conversion systems’ (Wiley-IEEE Press, Hoboken, NJ, 2016, 1st edn.).
    2. 2)
      • 14. Teodorescu, R., Liserre, M., Rodriguez, P.: ‘Grid converters for photovoltaic and wind power systems’ (Wiley-IEEE Press, Chichester, UK, 2011).
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 3. Global Wind Energy Council (GWEC): ‘Global wind report: annual market update’, 2015. Available at http://www.gwec.net, accessed on October 2016.
    10. 10)
    11. 11)
    12. 12)
      • 22. ‘Gamesa technological corporation s.a., Gamesa 5.0 MW [online]’, 2016. Available at http://www.gamesacorp.com, accessed on October 2016.
    13. 13)
      • 9. E.ON Netz Gmbh: ‘Grid code – high and extra high voltage’, April 2006.
    14. 14)
    15. 15)
      • 55. Musunuri, S., Ginn, H.: ‘Comprehensive review of wind energy maximum power extraction algorithms’. IEEE Power and Energy Society (PES) General Meeting, San Diego, CA, USA, July 2011, pp. 18.
    16. 16)
      • 80. Zhong, Q.-C., Hornik, T.: ‘Control of power inverters in renewable energy and smart grid integration’, ser. IEEE Press Series on Power Engineering (Wiley-IEEE Press, Chichester, UK, 2013, 1st edn.).
    17. 17)
      • 81. Tse, C.K.: ‘Sliding mode control of switching power converters: techniques and implementation’ (CRC Press, Boca Raton, FL, USA, 2011).
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 28. Iov, F., Blaabjerg, F., Clare, J., et al: ‘UNIFLEX-PM - a key-enabling technology for future European electricity networks’, Eur. Power Electron. Drives Assoc. J., 2009, 19, (4), pp. 616.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 43. Popova, L., Pyrhonen, J., Ma, K., et al: ‘Device loading of modular multilevel converter MMC in wind power application’. Int. Power Electronics Conf. (IPEC), Hiroshima, Japan, May 2014, pp. 548554.
    31. 31)
    32. 32)
    33. 33)
      • 4. Navigant Research: ‘A BTM wind report: world wind energy market update’, 2016. Available at http://www.navigantresearch.com, accessed on November 2016.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 18. Erdman, W., Behnke, M.: ‘Low wind speed turbine project phase II: the application of medium-voltage electrical apparatus to the class of variable speed multi-megawatt low wind speed turbines’ (National Renewable Energy Laboratory (N.R.E.L.), Golden, CO, USA, 2012).
    41. 41)
      • 25. Chivite-Zabalza, J., Larrazabal, I., Zubimendi, I., et al: ‘Multi-megawatt wind turbine converter configurations suitable for off-shore applications, combining 3-L NPC PEBBs’. IEEE Energy Conversion Congress and Exposition (ECCE), Denver, CO, USA, September 2013, pp. 26352640.
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • 65. Yaramasu, V., Wu, B.: ‘Three-level boost converter based medium voltage megawatt PMSG wind energy conversion systems’. IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, September 2011, pp. 561567.
    49. 49)
    50. 50)
    51. 51)
      • 32. Song, S.-H., l Kang, S., un Hahm, N.: ‘Implementation and control of grid connected AC–DC–AC power converter for variable speed wind energy conversion system’. IEEE Applied Power Electronics Conf. Exposition (APEC), Miami Beach, FL, USA, February 2003, vol. 1, pp. 154158.
    52. 52)
    53. 53)
    54. 54)
      • 17. Ibrahim, R.A., Hamad, M.S., Dessouky, Y., et al: ‘A review on recent low voltage ride-through solutions for PMSG wind turbine’. IEEE Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, June 2012, pp. 265270.
    55. 55)
    56. 56)
    57. 57)
      • 34. Xin, X., Hui, L.: ‘Research on multiple boost converter based on MW-level wind energy conversion system’. Int. Conf. on Electrical Machines and Systems (ICEMS), Nanjing, China, September 2005, vol. 2, pp. 10461049.
    58. 58)
      • 29. Mikhail, A.S., Cousineau, K.L., Howes, L.H., et al: ‘Variable speed distributed drive train wind turbine system’. United States Patent US 7,042,110 B2, May 2006.
    59. 59)
    60. 60)
      • 52. Gnanarathna, U., Chaudhary, S., Gole, A., et al: ‘Modular multi-level converter based HVDC system for grid connection of offshore wind power plant’. IET Int. Conf. on AC and DC Power Transmission (ACDC), October 2010, pp. 15.
    61. 61)
    62. 62)
    63. 63)
    64. 64)
      • 13. Wu, B., Lang, Y., Zargari, N., et al: ‘Power conversion and control of wind energy systems’, ser. IEEE Press Series on Power Engineering (Wiley-IEEE Press, Hoboken, NJ, 2011, 1st edn.).
    65. 65)
    66. 66)
    67. 67)
    68. 68)
      • 33. Xia, Y., Ahmed, K., Williams, B.: ‘Different torque ripple reduction methods for wind energy conversion systems using diode rectifier and boost converter’. IEEE Int. Electric Machines and Drives Conf. (IEMDC), Niagara Falls, ON, Canada, May 2011, pp. 729734.
    69. 69)
    70. 70)
    71. 71)
    72. 72)
      • 38. Faulstich, A., Stinke, J., Wittwer, F.: ‘Medium voltage converter for permanent magnet wind power generators up to 5 MW’. European Conf. on Power Electronics and Applications (EPE), Dresden, Germany, 2005, p. 9.
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
      • 7. Lundberg, S.: ‘Evaluation of wind farm layouts’, Eur. Power Electron. Drives Assoc. J., 2006, 16, (1), p. 14.
    78. 78)
      • 48. Anaya-Lara, O., Campos-Gaona, D., Moreno-Goytia, E., et al: ‘Offshore wind energy generation: control, protection, and integration to electrical systems’ (John Wiley & Sons, Inc., Chichester, UK, 2014, 1st edn.).
    79. 79)
    80. 80)
    81. 81)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2016.0799
Loading

Related content

content/journals/10.1049/iet-epa.2016.0799
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address