access icon free Analytical model for performance prediction of linear resolver

In this study an analytical model based on solving Maxwell equations in the machine layers is presented for linear resolver (LR). Anisotropy, field harmonics, slot effects, number of slots per pole per phase and the effect of tooth skewing are considered in the model. The proposed method is a design oriented technique that can be used for performance prediction and design optimisation of the LR due to its acceptable accuracy and fast computation time. Two- and three-dimensional time stepping finite element method (FEM) is employed to validate the results of the proposed model. Good correlations between the results obtained by the proposed method and the FEM confirm the superiority of the proposed method over the FEM due to its much lower computational time. Finally, the prototype of the proposed sensor is built and tested. The results of the experimental tests verify the accuracy of the simulations.

Inspec keywords: finite element analysis; electric machines; Maxwell equations

Other keywords: performance prediction; machine layers; finite element method; analytical model; linear resolver; Maxwell equations; computational time

Subjects: Finite element analysis; Small and special purpose electric machines; d.c. machines; a.c. machines

References

    1. 1)
      • 19. Nagasaka, N.: Linear resolver, (1987, November 10). US4705971.
    2. 2)
      • 12. Nasiri-Gheidari, Z., Tootoonchian, F., Zare, F.: ‘Design oriented technique for mitigating position error due to shaft run-out in sinusoidal-rotor variable reluctance resolvers’, IET Electr. Power Appl., 2017, 11, (1), pp. 132141.
    3. 3)
      • 23. Nasiri-Gheidari, Z.: ‘Design, performance analysis, and prototyping of linear resolvers’, IEEE Trans. Energy Convers., 2017, accepted for publication.
    4. 4)
      • 3. Sun, L.: ‘Analysis and improvement on the structure of variable reluctance resolvers’, IEEE Trans. Magn., 2008, 44, (8), pp. 20022008.
    5. 5)
      • 1. Ahn, J.W., Park, S.-J., Lee, D.-H.: ‘Novel encoder for switching angle control of SRM’, IEEE Trans. Ind. Electron., 2006, 53, (3), pp. 848854.
    6. 6)
      • 11. Shang, J., Wang, H., Wang, W.: ‘The analysis of multipole axial flux reluctance resolver with sinusoidal rotor’. Proc. 7th Int. Power Electron. Motion Control Conf., pp. 12061209.
    7. 7)
      • 16. Alipour-Sarabi, R., Nasiri-Gheidari, Z., Tootoonchian, F., et al: ‘Effects of physical parameters on the accuracy of axial flux resolvers’, IEEE Trans. Magn., 2017, 53, (4), pp. 111, doi: 10.1109/TMAG.2016.2645163.
    8. 8)
      • 8. Park, S.I., Kim, K.-C.: ‘Study on the optimal design of a novel slotless resolver by FEM’, IEEE Trans. Magn., 2014, 50, (11), pp. 14.
    9. 9)
      • 10. Ge, X., Zhu, Z.Q.: ‘A novel design of rotor contour for variable reluctance resolver by injecting auxiliary air-gap permeance harmonics’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 345353.
    10. 10)
      • 7. Ge, X., Zhu, Z.Q., Ren, R., et al: ‘A novel variable reluctance resolver with nonoverlapping tooth-coil windings’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 784794.
    11. 11)
      • 17. Nasiri-Gheidari, Z., Tootoonchian, F.: ‘The influence of mechanical faults on the position error of an axial flux brushless resolver without rotor windings’, IET Electr. Power Appl., 2017, 11, (4), pp. 613621.
    12. 12)
      • 14. Nasiri-Gheidari, Z.: ‘Design, analysis, and prototyping of a new wound-rotor axial flux brushless resolver’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 276283.
    13. 13)
      • 24. Saneie, H., Nasiri-Gheidari, Z., Tootoonchian, F.: ‘The influence of winding's pole pairs on position error of linear resolvers’. 25th Iranian Conf. on Electrical Engineering (ICEE), Tehran, Iran, 2017, pp. 16.
    14. 14)
      • 9. Tootoonchian, F., Nasiri-Gheidari, Z.: ‘Twelve-slot two-saliency variable reluctance resolver with nonoverlapping signal windings and axial flux excitation’, IET Electr. Power Appl., 2017, 11, (1), pp. 4962.
    15. 15)
      • 26. Deng, Z., Boldea, I., Nasar, A.: ‘Fields in permanent magnet linear synchronous machines’, IEEE Trans. Magn., 1986, 22, (2), pp. 107112.
    16. 16)
      • 18. Kajioka, M., Watada, M., Ebihara, D.: ‘The Study of development for the linear magnetic position sensor’. Proc. EPE'99, Lausanne, Switzerland, 1999, pp. 15.
    17. 17)
      • 25. Daniar, A., Nasiri-Gheidari, Z.: ‘The influence of different configurations on position error of linear variable reluctance resolvers’. 25th Iranian Conf. on Electrical Engineering (ICEE), Tehran, Iran, 2017, pp. 16.
    18. 18)
      • 22. Online, Available at http://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US4891590.pdf.
    19. 19)
      • 15. Tootoonchian, F.: ‘Design, performance, and testing of a brushless axial flux resolver without rotor windings’, IEEE Sens. J., 2016, 16, (20), pp. 74647471.
    20. 20)
      • 13. Nasiri-Gheidari, Z., Tootoonchian, F.: ‘Axial flux resolver design techniques for minimizing position error due to static eccentricities’, IEEE Sens. J., 2015, 15, (7), pp. 40274034.
    21. 21)
      • 28. Hosseini, M.S., Vaez-Zadeh, S.: ‘Modeling and analysis of linear synchronous motors in high-speed maglev vehicles’, IEEE Trans. Magn., 2010, 46, (7), pp. 26562664.
    22. 22)
      • 2. Hoseinnezhad, R., Bab-Hadiashar, A., Harding, P.: ‘Calibration of resolver sensors in electromechanical braking systems: A modified recursive weighted least-squares approach’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 10521060.
    23. 23)
      • 4. Kim, K.C.: ‘Analysis on the characteristics of variable reluctance resolver considering uneven magnetic fields’, IEEE Trans. Magn., 2013, 49, (7), pp. 38583861.
    24. 24)
      • 21. Linear resolver utilizing plural nulled coil sets, by W. S. Hammel, D. B. Lawson, and K. W. V. Patten. (1990, January 2). US4891590.
    25. 25)
      • 20. Online, Available at http://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US4705971.pdf.
    26. 26)
      • 6. Kim, K.C., Jin, C.S., Lee, J.: ‘Magnetic shield design between interior permanent magnet synchronous motor and sensor for hybrid electric vehicle’, IEEE Trans. Magn., 2009, 45, (6), pp. 28352838.
    27. 27)
      • 5. Jin, C.S., Jang, I.-S., Bae, J.-N., et al: ‘Proposal of improved winding method for VR resolver’, IEEE Trans. Magn., 2015, 51, (3), pp. 14.
    28. 28)
      • 27. Zhu, Z.Q., Howe, D.: ‘Instantaneous magnetic field distribution in brushless permanent magnet dc motors, part III: Effect of stator slotting’, IEEE Trans. Magn., 1993, 29, (1), pp. 143151.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2016.0693
Loading

Related content

content/journals/10.1049/iet-epa.2016.0693
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading