access icon free Fault-tolerant predictive power control of a DFIG for wind energy applications

This study presents a new fault-tolerant predictive power control strategy for doubly-fed induction generators (DFIGs) used in wind energy applications, with the rotor fed by a three-level neutral point clamped converter. The proposed control strategy is able to maintain the system in operation with a good performance after the occurrence of either open-circuit (OC) or short-circuit faults in the insulated-gate bipolar transistors (IGBTs) of the rotor-side converter (RSC), thus reducing the downtime and maintenance costs of wind turbines. The fault-tolerant strategy takes advantage of the discrete nature and flexibility of finite control set model predictive control strategies and restricts the possible switching states of the power converter according to the type of fault and its location. A diagnosis method for IGBT OC faults in the RSC, based on voltage errors, is also proposed for the considered system. This method uses the estimated rotor voltages from the DFIG model, thus avoiding the use of any extra sensors. Accurate and fast detection of OC faults in both interior and exterior IGBTs is achieved throughout the entire DFIG operational range. The effectiveness of the fault diagnosis method and fault-tolerant control strategy is validated with several experimental results.

Inspec keywords: power system protection; wind power; fault location; power control; power generation control; power generation faults; rotors; bipolar transistor circuits; asynchronous generators; wind power plants; fault tolerant control; predictive control

Other keywords: RSC IGBT; open-circuit fault; wind energy application; fault location; power converter switching state; IGBT OC fault diagnosis method; three-level neutral point clamped converter; wind turbine downtime reduction; doubly-fed induction generator; finite control set model; wind turbine maintenance cost reduction; rotor-side converter insulated gate bipolar transistor; DFIG fault-tolerant predictive power control; short-circuit fault

Subjects: Power system protection; Wind energy; Wind power plants; Power convertors and power supplies to apparatus; Power and energy control; Control of electric power systems; Asynchronous machines

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 13. Lu, B., Sharma, S.K.: ‘A literature review of IGBT fault diagnostic and protection methods for power inverters’, IEEE Trans. Ind. Electron., 2009, 45, (5), pp. 17701777.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 19. Lee, J.S., Lee, K.B., Blaabjerg, F.: ‘Open-switch fault detection method of a back-to-back converter using NPC topology for wind turbine systems’, IEEE Trans. Ind. Electron., 2015, 51, (1), pp. 325335.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 20. Choi, U.M., Lee, J.S., Blaabjerg, F., et al: ‘Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 72347247.
    18. 18)
      • 28. Araya, M.F., Silva, C., Cortes, P.: ‘Predictive current control of a doubly fed inductor generator (DFIG) for fast power reference tracking’. IEEE Int. Power Electronics and Motion Control Conf. (EPE/PEMC), Novi Sad, Serbia, September 2012, pp. DS2a.5-1DS2a.5-6.
    19. 19)
      • 14. Yang, S., Bryant, A., Mawby, P., et al: ‘An industry-based survey of reliability in power electronic converters’, IEEE Trans. Ind. Electron., 2011, 47, (3), pp. 14411451.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 5. Abad, G., Lopez, J., Rodriguez, M., et al: ‘Doubly fed induction machine: modeling and control for wind energy generation’ (John Wiley & Sons, 2011, 1st edn.).
    25. 25)
    26. 26)
      • 2. Blaabjerg, F., Liserre, M., Ma, K.: ‘Power electronics converters for wind turbine systems’, IEEE Trans. Ind. Electron., 2012, 48, (2), pp. 708719.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2016.0494
Loading

Related content

content/journals/10.1049/iet-epa.2016.0494
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading