http://iet.metastore.ingenta.com
1887

access icon openaccess Integrated motor drives: state of the art and future trends

Loading full text...

Full text loading...

/deliver/fulltext/iet-epa/10/8/IET-EPA.2015.0506.html;jsessionid=366pgnkjniu78.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-epa.2015.0506&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Bartos, F.J.: ‘Combination motors and drives move to make their mark’ Control Engineering Online, December 2000. Available at http://www.csemag.com/single-article/combination-motors-and-drives-move-to-make-their-mark/d9a8ab08897749f02e39653c06a6cc49.html.
    2. 2)
      • 2. Bartos, F.J.: ‘Integrated motor-drives seek wider market, user acceptance’, Control Eng., 2000, 47, (13), pp. 1923.
    3. 3)
      • 3. Viorel, I.A., Szabo, L., Ciorba, R.C.: ‘Integrated motor and control unit for industrial variable speed drive’. Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.301.2182&rep=rep1&type=pdf accessed November 2015.
    4. 4)
      • 4. Hornberger, J.M., Cilio, E., Schupbach, R.M., et al: ‘A high-temperature multichip power module (MCPM) inverter utilizing silicon carbide (SiC) and silicon on insulator (SoI) electronics’. Power Electronics Specialists Conf. PESC, 2006, pp. 17.
    5. 5)
      • 5. Babb, M., Bartos, F.: ‘Integrated motor drive combinations’, Control Eng. Eur., 2001, 57, (21), p. 66.
    6. 6)
      • 6. Wang, J., Li, Y., Han, Y.: ‘Evaluation and design for an integrated modular motor drive (IMMD) with GaN devices’. Energy Conversion Congress and Exposition (ECCE), IET, 2013, pp. 43184325.
    7. 7)
      • 7. Agarwald, S.H., Ryu, S.H., Krishnaswami, S., et al: ‘a review of high power, high temperature SiC devices’. High Temperature Electronics Conf. HITEC 2006, May 2006.
    8. 8)
      • 8. Williamson, S., Jackson, D.C.: ‘Integrated drives for industrial applications’. Proc. of PCIM'99, Intelligent Motion, 1999, pp. 913.
    9. 9)
      • 9. Thoegersen, P., Blaabjerg, F.: ‘Adjustable speed drives in the next decade. The next step in industry and academia’. Proc. of PCIM '00, Intelligent Motion, pp. 95104.
    10. 10)
      • 10. Vas, P., Dury, W.: ‘Electrical machines and drives: present and future’. Proc. of Electrotechnical Conf. (MELECON '96), vol. 1, pp. 6774.
    11. 11)
      • 11. Brown, N.R., Jahns, T.M., Lorenz, R.D.: ‘Development of a converter for an integrated modular motor drive’. Centre for Power Electronics Systems (CPES) 2007. CPES, pp. 419425.
    12. 12)
      • 12. Nie, Z., Emadi, A.: ‘Integrated converters for switched reluctance motor drives’. Power Electronics and Motion Control Conf., 2004. IPEMC, 2004, vol. 2, pp. 487490.
    13. 13)
      • 13. Marz, M., Schletz, A., Eckardt, B., et al: ‘Power electronics system integration for electric and hybrid vehicles’. 2010 Sixth Int. Conf. IEEE Integrated Power Electronics Systems (CIPS). pp. 110.
    14. 14)
    15. 15)
      • 15. Zeng, L., Chen, X., Nong, X., et al: ‘FE-based physical model of LPMBDCM for integrated motor drive system analysis’. Third Int. Conf. IEEE Innovative Computing Information and Control, ICICIC '08.2008, p. 581.
    16. 16)
    17. 17)
    18. 18)
      • 18. Haghbin, S., Thiringer, T., Carlson, O.: ‘An integrated split-phase dual-inverter permanent magnet motor drive and battery charger for grid-connected electric or hybrid vehicles’. 20th Int. Conf. on Electrical Machines (ICEM). IEEE., 2012, pp. 19411947.
    19. 19)
      • 19. Pickering, S., Thovex, F., Wheeler, P., et al: ‘Thermal design of an integrated motor drive’. IECON 2006–32nd Annual Conf. on Industrial Electronics IEEE, pp. 47944799.
    20. 20)
    21. 21)
      • 21. Wolmarans, J.J., Gerber, M.B., Polinder, H., et al: ‘A 50 kW integrated fault tolerant permanent magnet machine and motor drive’. IEEE Power Electronics Specialists Conf.. 2008, pp. 345351.
    22. 22)
      • 22. Biswas, P.S., Das, N., Biswas, S.K.: ‘Design consideration of an integrated induction motor drive to replace auxiliary dc motors in locomotives’. Int. Conf. on Power Electronics and Drives Systems IEEE.2005, vol. 2, pp. 872875.
    23. 23)
      • 23. Shakweh, Y., Owen, G.H., Hall, D.J., et al;: ‘Plug and play integrated motor drives’. Proc. of IEE Power Electronics, Machines and Drives Conf. (PEMD'02), 2002, pp. 655661.
    24. 24)
      • 24. Farina, F., Rossi, D., Tenconi, A., et al: ‘Thermal design of integrated motor drives for traction applications’, Power Electron. Eur. Appl., 2005, p. 10.
    25. 25)
      • 25. ‘Schneider Lexium 32i’. Available at http://download.schneider-electric.com/files?p_Reference=0198441113956-EN&p_EnDocType=User%20guide&p_File_Id=681840597&p_File_Name=LXM32iECT_Manual_V100_EN.pdf, accessed November 2015..
    26. 26)
      • 26. ‘Danfoss VLT DriveMotor FCM 300’. Available at http://www.danfoss.com/NR/rdonlyres/40FA1C95-CFB6-4BA1-A69D-D36F61436B59/0/FCM300_FactSheet_PF009A02.pdf, accessed November 2015.
    27. 27)
      • 27. ‘VEMoDRIVE – variable speed drives’. Available at http://www.vem-group.com/fileadmin/content/pdf/Download/Brosch%C3%BCren/Flyer_VEM-motors/28_PB_en.pdf, accessed November 2015.
    28. 28)
      • 28. ‘Innovative motor technology for hybrid and electric vehicles’. Available at http://w3.siemens.com/topics/global/de/elektromobilitaet/PublishingImages/antriebe-pkw/pdf/sivetec-mrs-mri-siemens_en.pdf, accessed November 2015.
    29. 29)
      • 29. ‘Lenze Inverter Drives 8400 motec’. Available at http://www.actechdrives.com/PDF/Lenze/Lenze-8400-Motec-Inverters.pdf, accessed November 2015.
    30. 30)
      • 30. ‘Siemens Multiple Drive for Vertical Mills’. Available at http://www.industry.siemens.com/drives/global/en/gear-units/application-specific-gear-units/vertical-mills/flender-multiple-drive/pages/default.aspx, accessed November 2015.
    31. 31)
      • 31. Wheeler, P.W., Clare, J.C., Apap, M., et al: ‘An integrated 30 kW matrix converter based induction motor drive’. PESC '05. IEEE 36th Power Electronics Specialists Conf., IEEE,. 2005, pp. 23902395.
    32. 32)
    33. 33)
      • 33. ‘UQM and Kinetics present integrated motor and multi-speed transmission for commercial Evs’. Available at https://chargedevs.com/newswire/uqm-and-kinetics-present-integrated-motor-and-multi-speed-transmission-for-commercial-evs/, accessed November 2015.
    34. 34)
      • 34. ‘Bonfiglioli 600D - Electric powertrains for lightweight vehicles’. Available at http://www.bonfiglioli.co.uk/en-gb/mobile/products/electric-solutions/powertrains/product/600d-electric-powertrain/, accessed November 2015.
    35. 35)
      • 35. ‘E-Trac IMD integrated motor drive’. Available at http://www.southernpower.com/pdf/woods/electronic_products_guide.pdf, accessed November 2015.
    36. 36)
      • 36. Henze, M.: ‘The Integral Motor – a new variable-speed motor drive’. Available at https://library.e.abb.com/public/82be3ed09497afb3c1256ddd00346fb6/04-08m181.pdf, accessed November 2015.
    37. 37)
      • 37. Fraser, A.:IN-WHEEL ELECTRIC MOTORS - The packaging and integration challenges’. Available at http://www.proteanelectric.com/wp-content/uploads/2013/07/In_Wheel_Electric_Motors_AFraser_ProteanV4.pdf accessed 12 April 2015.
    38. 38)
      • 38. Perovic, D.: ‘Making the impossible, possible – overcoming the design challenges of in wheel motors’, EVS26 Int. Battery, Hybrid and Fuel Cell Electric Vehicle Symp., 2012, 5, pp. 514519.
    39. 39)
      • 39. Mueller, S.I., Nellis, G.F., Jahns, T.M.: ‘Model and design of an aircooled thermal management system for an integrated motor-controller’. Proc. of 2005 CPES Power Electronics Seminar, pp. 145152.
    40. 40)
      • 40. ‘Integrated IE4 motor-drive is 'up to 40% smaller' Yaskawa 4 kW. Available at http://en.ofweek.com/new-products/Integrated-IE4-motor-drive-is-up-to-40-smaller-23406, accessed November 2015.
    41. 41)
      • 41. ‘Baldor SmartMotor’. Available at http://www.baldor.com/Shared/manuals/750-902.pdf, accessed November 2015.
    42. 42)
      • 42. ‘Getting more from the motor’. Available at http://eandt.theiet.org/magazine/2015/02/efficient-motor-drives.cfm, accessed November 2015.
    43. 43)
      • 43. ‘Grundfoss E-pumps’. Available at https://us.grundfos.com/content/dam/GPU/Literature/LCSE-LFE/LCBSSL04-0614-Grundfos-E-Pump-Brochure.pdf, accessed November 2015.
    44. 44)
      • 44. ‘Rockwell Automation – Kinitex 6000’. Available at http://literature.rockwellautomation.com/idc/groups/literature/documents/td/gmc-td001_-en-p.pdf, accessed November 2015.
    45. 45)
      • 45. ‘Variable speed motor or geared motor’. Available at http://www.leroy-somer.com/documentation_pdf/3415_en.pdf, accessed November 2015.
    46. 46)
      • 46. ‘MOVIMOT® gearmotor with integrated frequency inverter’. Available at http://www.seweurodrive.com/produkt/movimot-gearmotor-with-integrated-frequency-inverter.htm, accessed November 2015.
    47. 47)
      • 47. ‘Lenze smart motor M300’. Available at http://www.lenze.com/fileadmin/lenze/documents/en/catalogue/CAT_MT_MS_13449851_en_GB.pdf, accessed November 2015.
    48. 48)
      • 48. Miller, T.J.: ‘Electrical Energy Storage for Vehicles: Targets and Metrics’. Available at http://www.arpa-e.energy.gov/sites/default/files/documents/files/Ford%20Presentation.pdf, accessed November 2015.
    49. 49)
      • 49. ‘Alpha step series’. Available at http://www.orientalmotor.com/products/stepper-motors/ASX-series-all-in-one-stepper-motor.html, accessed November 2015.
    50. 50)
      • 50. INMOCO. Available at http://www.inmoco.co.uk/pegasus_integrated_servo_system, accessed November 2015.
    51. 51)
      • 51. ‘AXOR fastback’. Available at http://www.motioncontrolproducts.com/pdfs/axor-fast-back-brushless-motor-with-drive.pdf, accessed November 2015.
    52. 52)
      • 52. Johnson, R.W.: ‘A review of high temperature electronics packaging’. Proc. 1989' High Temperature Electronics Conf..
    53. 53)
      • 53. Olesen, K., Bredtmann, R., Eisele, R.: ‘ShowerPower’ new cooling concept for automotive applications’, Automot. Power Electron., 2006, pp. 19.
    54. 54)
      • 54. Hearn, J.A.: ‘Future packaging technologies for hybrid electronics in automotive underhood environment’. Proc. 1989 High Temperature Electronics Conf., 1989.
    55. 55)
      • 55. Stolpa, S.: ‘Turbulent heat transfer’. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, USA, April 2004.
    56. 56)
      • 56. McClusky, P., Grzybowski, R.R., Das, D., et al: ‘Packaging of electronics for high temperature applications’, Int. J. Microcircuits Electron. Packag., 1997, 20, (3), pp. 409423.
    57. 57)
      • 57. Mantooth, H.A., Mojarradi, M.M., Johnson, R.W.: ‘Emerging capabilities in electronics technologies for extreme environments. Part I - High temperature electronics’, IEEE Power Electron. Soc. Newsl., 2006, 18, (1), pp. 914.
    58. 58)
      • 58. Şenyıldız, T., Eisele, R., Olesen, K.: ‘Thermal management concepts for power electronic modules’, Danfoss Silicon Power GmbH, 2003, pp. 16.
    59. 59)
      • 59. Liang, Z., Ning, P., Wang, F.: ‘Advanced packaging of sic power module for automotive applications’. Energy Conversion Congress and Exposition (ECCE), IEEE, September 2013, p. 2884, 2891 15–19.
    60. 60)
      • 60. Liang, Z., Li, L.: ‘HybridPACK2 - advanced cooling concept and package technology for hybrid electric vehicles’. Vehicle Power and Propulsion Conf., VPPC '08. IEEE, September 2008, p. 1, 5, 3–5.
    61. 61)
      • 61. Haque, S., Xing, K., Suchicital, C., et al: ‘Thermal management of high-power electronics modules packaged with interconnected parallel plates’. 14th Annual IEEE Semiconductor Thermal Measurement and Management Symp., SEMI-THERM Proc. 1998, March 1998, p. 111, 119, 10–12.
    62. 62)
    63. 63)
      • 63. Ozpineci, B., Tolbert, L.M., Islam, S.K., et al: ‘Testing, characterization and modelling of SiC diodes for transportation applications’. IEEE Power Electronics Specialists Conf. IEEE.2002, pp. 16731678.
    64. 64)
      • 64. Ghandhi, S.K.: ‘Semiconductor power devices’ (Wiley, 1977, republished 1998).
    65. 65)
      • 65. Baliga, B.J.: ‘Physics of semiconductor power devices’ (JWS Publishing, 1996).
    66. 66)
      • 66. Shur, M.S., Gaska, R., Khan, A., et al: ‘Wide band gap electronic devices’. Fourth IEEE Int. Caracas Conf. on Devices, Circuits and Systems. IEEE, 2002, pp. 5158.
    67. 67)
      • 67. O'Connor, J., Smiltens, J.: ‘Silicon carbide, a high temperature semiconductor’ (Symp. Publications Division, Pergamon Press, New York, 1960).
    68. 68)
      • 68. Hudgins, J.L., Simin, G.S., Khan, M.A.: ‘A new assessment of the use of wide bandgap semiconductors and the potential for GaN’. Power Electronics Specialists Conf., 2002, vol. 4, pp. 17471752.
    69. 69)
      • 69. Hornberger, J., Lostetter, A.B., Olejniczak, K.J., et al: ‘Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments’. 4 IEEE Aerospace Conf., Proc.. 2004, pp. 25382555.
    70. 70)
    71. 71)
      • 71. v.Muench, M., Hoeck, P., Pettenpaul, E.: ‘IEEE Int. Electron Device Mtg. Technical Digest 337 1977.
    72. 72)
      • 72. Ebert, W., Vescan, A., Borst, T.H., et al: ‘IEEE Intl. Electron Device Mtg. Technical Digest 419 1994.
    73. 73)
    74. 74)
    75. 75)
    76. 76)
      • 76. Ozpineci, B., Tolbert, L.M.: ‘Comparison of wide-band gap semiconductors for power electronics applications’. (Department of Energy, United States, 2003).
    77. 77)
    78. 78)
      • 78. Bhalla, A., Chow, T.P.: ‘Examination of semiconductors for bipolar power devices’, Inst. Phys. Conf. Ser., 1994, 137, (621), pp. 621623.
    79. 79)
      • 79. Bhalla, A., Chow, T.P.: ‘Bipolar power device performance: dependence on materials, lifetime and device ratings’. Proc. Sixth Int. Symp. on Power Semiconductor Devices and ICs, 1994, pp. 287292.
    80. 80)
    81. 81)
    82. 82)
    83. 83)
      • 83. Mishra, U.: ‘Compound semiconductors; GaN and SiC, separating fact from fiction in both research and business’. Available at http://www.apec-conf.org/wp-content/uploads/2014/01/2_APEC2013Plenary_Compound_Semiconductors_GaN__SiC_Mishra_Transphorm.pdf, accessed 10 April 2015.
    84. 84)
      • 84. Trivedi, M., Shenai, K.: ‘High temperature capability of devices on Si and wide bandgap materials’. Industry Applications Conf., IEEE, 1998, vol. 2, pp. 959962.
    85. 85)
      • 85. Microsemi PPG: ‘Gallium nitride (GaN) versus silicon carbide (SiC) In the High Frequency (RF) and power switching applications’. Available at http://www.digikey.co.uk/Web%20Export/Supplier%20Content/Microsemi_278/PDF/Microsemi_GalliumNitride_VS_SiliconCarbide.pdf?redirected=1, accessed 08 April 2015.
    86. 86)
      • 86. Extance, A.: ‘SiC and GaN power devices jostle to grow their role’, Yole Development, Issue 9, 2013. Available at http://www.yole.fr/iso_upload/mag/powerdev_april2013_ir.pdf 09 Apr, 2015.
    87. 87)
      • 87. Tolbert, L.M., Ozpineci, B., King, T.J., et al: ‘Power electronics for distributed energy systems and transmission and distribution applications’, 2005.
    88. 88)
    89. 89)
    90. 90)
      • 90. Hudgins, J.L., Simm, G.S., Khan, M.A.: ‘A new assessment of the use of wide bandgap semiconductors and the potential of GaN’. The 33d Annual IEEE Power Electronics Specialists Conf. (PESC02), 2002, pp. 17471752.
    91. 91)
      • 92. Benţia, I., Ruba, M., Szabó, L.: ‘Modular electrical machines – a survey’. Proc. of the Int. Scientific Conf. MicroCAD, 2010.
    92. 92)
      • 93. van der Duijn Schouten, N.P., Gordon, B.M., McMahon, R.A., et al: ‘Integrated drives as single-phase motor replacement’. Industry Applications Conf., 1999. Thirty-Fourth IAS Annual Meeting. Conf. Record of the IEEE, 1999, vol. 2, pp. 922928.
    93. 93)
      • 94. März, M.: ‘Technology choices for automotive applications’. Int. Conf. on Automotive Power Electronics (APE), Paris, 2007.
    94. 94)
      • 95. Klumpner, C., Blaabjerg, F., Thogersen, P.: ‘Evaluation of the converter topologies suited for integrated motor drives’. 38th IAS Annual Meeting Conf. Record of the Industry Applications Conf., IEEE., 2003, vol. 2, pp. 890897.
    95. 95)
    96. 96)
    97. 97)
      • 98. Randall, M., Skamser, D., Kinard, T.: ‘Thin film MLCC’. CARTS 2007 Symp. Proc., Albuquerque, NM, 2007, pp. 112.
    98. 98)
    99. 99)
      • 100. Yano Research Institute: ‘Capacitor market in japan: key research findings 2009’ (Yano Research Institute, Tokyo, Japan, 2009).
    100. 100)
      • 101. Phillips, R., Bultitude, J., Gurav, A., et al: ‘High temperature ceramic capacitors for deep well applications’. CARTS Int. Proc., 2013.
    101. 101)
      • 102. Kim, W., Shin, S.H., Ryu, D.S.: ‘Reliability evaluation and failure analysis for high voltage ceramic capacitor’, Adv. Electron. Mater. Packag., 2001, pp. 286195.
    102. 102)
      • 103. Al Ahmar, J., Wiese, S.: ‘Fracture mechanics analysis of cracks in multilayer ceramic capacitors’. Electronics System-Integration Technology Conf. (ESTC), 2014, pp. 115.
    103. 103)
    104. 104)
      • 105. Kirisken, B., Ugurdag, H.F.: ‘Cost-benefit approach to degradation of electrolytic capacitors’. Reliability and Maintainability Symp., 2014, pp. 16.
    105. 105)
      • 106. Deshpande, R.P.: ‘Capacitors: technology and trends’ (Tata McGraw-Hill Education, 2012).
    106. 106)
      • 107. Bramoulle, M.: ‘Electrolytic or film capacitors’. 33rd IAS Annual Meeting Industry Applications Conf., 1998, vol. 2, pp. 11381142.
    107. 107)
      • 108. Parler, S.G.Jr.: ‘Deriving life multipliers for electrolytic capacitors’, IEEE Power Electron. Soc. Newsl., 2004, 16, pp. 1112.
    108. 108)
      • 109. Maddula, S.K., Balda, J.C.: ‘Lifetime of electrolytic capacitors in regenerative induction motor drives’. Power Electronics Specialists Conf., 2005, pp. 153159.
    109. 109)
      • 110. Spanik, P., Frivaldsky, M., Kanovsky, A.: ‘Life time of the electrolytic capacitors in power applications’, ELEKTRO, 2014, pp. 233238.
    110. 110)
    111. 111)
      • 112. Yaohong, C., Fuchang, L., Hua, L.: ‘Study on self-healing and lifetime characteristics of metallized film capacitor under high electric field’. Pulsed Power Conf. (PPC), 2011, pp. 711716.
    112. 112)
      • 113. ‘The new high temperature dielectric film for power capacitors’, accessed November 2015. Available at http://www.birkelbachfilm.de/pdf/datenblaetter/DTF_Teonex_HV_0912.pdf.
    113. 113)
      • 114. Caliari, L., Bettacchi, P., Boni, E., et al: ‘KEMET film capacitors for high temperature, high voltage and high current’. CARTS Int. Proc.– ECA, 2013.
    114. 114)
      • 115. Klumpner, C., Blaabjerg, F., Thogersen, P.: ‘Converter topologies with low passive components usage for the next generation of integrated motor drives’. Power Electronics Specialist Conf., PESC '03. 2003 IEEE 34th Annual, 2, IEEE., pp. 568573.
    115. 115)
    116. 116)
      • 117. Becker, H.I., U.S. pat., 2800.616 to General Electric Co., 1957.
    117. 117)
    118. 118)
      • 119. Burke, A.: ‘Power sources’, 2000, 91, 37. 2000.
    119. 119)
      • 120. Chen, H., Cong, T.N., Yang, W., et al: ‘Progress in electrical energy storage system: a critical review’, Prog. Nat. Sci., 2009, 19, (3), pp. 291312.
    120. 120)
      • 121. Lambert, S.M., Pickert, V., Holden, J., et al: ‘Comparison of supercapacitor and lithium-ion capacitor technologies for power electronics applications’. Fifth IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2010), April 2010, p. 1,5, 19–21.
    121. 121)
      • 122. Neudeck, P.G., Matus, L.G.: ‘An overview of silicon carbide device technology’. Ninth Symp. on Space Nuclear Power Systems, 1992, pp. 1216.
    122. 122)
    123. 123)
    124. 124)
    125. 125)
    126. 126)
    127. 127)
      • 128. Savrun, E.: ‘Packaging considerations for very high temperature microsystems’. Proc. 1st IEEE Sens., 2002, vol. 2, pp. 11391143.
    128. 128)
    129. 129)
      • 130. ROHM full SiC power Module Data sheet. Available at http://rohmfs.rohm.com/en/products/databook/datasheet/discrete/sic/power_module/bsm180d12p2c101.pdf, accessed 08 April 2015.
    130. 130)
      • 131. Mitsubishi SiC Power modules. Available at http://www.mitsubishielectric.com/semiconductors/catalog/pdf/SiCPowerModules_E_201409.pdf Accessed Apr 08, 2015.
    131. 131)
      • 132. Schupbach, R.M., McPherson, B., McNutt, T., et al: ‘High temperature (250°C) SiC power module for military hybrid electrical vehicle applications’. NDIA Ground Veh. Syst. Eng. Technol. Symp., August 2011, pp. 17.
    132. 132)
      • 133. Horio, M., Iizuka, Y., Ikeda, Y.: ‘Packaging technologies for SiC power modules’, Fuji Electr. Rev., 2012, 58, (2), pp. 7578.
    133. 133)
      • 134. Chen, Z., Yao, Y., Boroyevich, D., et al: ‘A 1200 V, 60 A SiC MOSFET multi-chip phase-leg module for high-temperature, high-frequency applications’. Applied Power Electronics Conf. and Exposition (APEC), 28th Annual IEEE, 2013, pp. 608615.
    134. 134)
    135. 135)
      • 136. Katsis, D., Zheng, Y.: ‘Development of an extreme temperature range silicon carbide power module for aerospace applications’. Proc. 39th IEEE Power Electron. Spec. Conf., 2008, pp. 290294.
    136. 136)
    137. 137)
    138. 138)
      • 139. Kodani, K., Tsukinari, T., Matsumoto, T.: ‘New power module concept by forced-air cooling system for power converter’. Int. Power Electronics Conf. (IPEC), June 2010, p. 542, 545, 2124.
    139. 139)
      • 140. Johnson, R.W., Palmer, M., Wang, C., et al: ‘Packaging materials and approaches for high temperature SiC power devices’, Adv. Microelectron., 2004, 31, (1), pp. 811.
    140. 140)
      • 141. Mustain, H.A., Lostetter, A.B., Brown, W.D.: ‘Evaluation of gold and aluminium wire bond performance for high temperature (500 °C) silicon carbide (SiC) power modules’. Electronic Components and Technology ECTC, 2005, vol. 2, pp. 16231628.
    141. 141)
      • 142. Salmon, J.S., Johnson, R.W., Palmer, M.: ‘Thick film hybrid packaging techniques for 500°C operation’. Proc. Fourth Int. High Temperature Electronics Conf. (HITEC), 1998, pp. 103108.
    142. 142)
    143. 143)
      • 144. Bower, G., Rogan, C.P.E., Kozlowski, J., et al: ‘SiC power electronics packaging prognostics’. Aerospace Conf., 2008, pp. 112.
    144. 144)
      • 145. Zhenxian, L.: ‘Packaging technologies to exploit the attributes of WBG power electronics’. IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2014, pp. 173.
    145. 145)
      • 146. Pooch, M.H., Dittmer, K.J., Gabisch, D.: ‘Investigations on the damage mechanism of aluminium wire bonds used for high power applications’. Proc. European Conf. Electronics Packaging Technology, 1996, pp. 128131.
    146. 146)
      • 147. Chen, L., Neudeck, P.G.: ‘Thick and thin film materials based chip level packaging for high temperature SiC sensors and devices’, Technical Report, AYT/NASA Glenn Research Center, 2001.
    147. 147)
      • 148. Cressler, J.D., Mantooth, H.A.: ‘Extreme environment electronics’ (CRC Press, Florida, 2012).
    148. 148)
      • 149. Cheng, C.H., siao, H.L., Chu, S.I., et al: ‘Low cost silver alloy wire bonding with excellent reliability performance’. 2013 IEEE 63rd Electronic Components and Technology Conf. (ECTC), 28–31 May 2013, vol., no., pp. 15691573.
    149. 149)
      • 150. Lu, C.: ‘Review on silver wire bonding’. Microsystems, Packaging, Assembly and Circuits Technology Conf. (IMPACT), 2013 Eighth Int., 22–25 October 2013, vol., no., pp. 226229.
    150. 150)
      • 151. Xiao, Y., Natarajan, R., Chow, T.P., et al: ‘Flip-chip flex-circuit packaging for 42 V/16 A integrated power electronics module applications’. 17th Annual IEEE Applied Power Electronics Conf. and Exposition, 2002. APEC 2002.2002, vol. 1, no., pp. 2126.
    151. 151)
    152. 152)
      • 153. Muralidharan, G., Tiegs, T.N.: ‘Composite die-attach materials for high-temperature packaging applications’. High Temperature Electronics Conf. HITEC, 2006.
    153. 153)
      • 154. Jacob, P., Held, M., Sacco, P., et al: ‘Reliability testing and analysis of IGBT power semiconductor modules’, IEEE Colloquim IGBT Propulsion Drives, 1995, pp. 4/14/5.
    154. 154)
      • 155. Knoerr, M., Kraft, S., Schletz, A.: ‘Reliability assessment of sintered nano-silver die attachment for power semiconductors’. Proc. 12th Electron. Package. Technol. Conf., 2010, pp. 5661.
    155. 155)
      • 156. Buttay, C., Masson, A., Li, J., et al: ‘Die attach of power devices using silver sintering bonding process optimization and characterization’, The IMAPS High Temperature Electronics Network., 2011, pp. 17.
    156. 156)
    157. 157)
      • 158. Hopkins, D.C., Kellerman, D.W., Wunderlich, R.A., et al: ‘High-temperature, high-density packaging of a 60 kW converter for >200°C embedded operation’. Applied Power Electronics Conf. and Exposition, 2006.
    158. 158)
      • 159. Humpston, G., Jacobson, D.M.: ‘Principles of Soldering’, ASM International, 2004.
    159. 159)
    160. 160)
      • 161. Bai, J.G., Zhang, Z.Z., Calata, J.N., et al: ‘Low-temperature sintering of nanoscale silver paste: a lead-free die-attach solution for high-performance and high-temperature electronic packaging’. High Temperature Electronics Conf., 2012.
    161. 161)
      • 162. Chih, P.W., Mesa, B.J.A., Hong, X., et al: ‘Application and high temperature storage test on Zn-Al-Ge high temperature solder for die attach’. 2014 IEEE 16th Electronics Packaging Technology Conf. (EPTC), 3–5 December 2014, vol., no., pp. 463468.
    162. 162)
      • 163. McCluskey, F.P., Wang, Z., Dash, M., et al: ‘Reliability of high temperature solder alternatives’. High Temperature Electronics Conf. HITEC, 2006.
    163. 163)
      • 164. Lu, G.-Q., Calata, J.N., Zhang, Z., et al: ‘A lead-free, low-temperature sintering die-attach technique for high-performance and high temperature packaging’. IEEE CPMT Conf. on High Density Microsystem Design and Packaging and Component Failure Analysis HDP, 2004, pp. 4246.
    164. 164)
      • 165. Wu, M., Lu, G.-Q., Yin, J., et al: ‘Thermal modelling and electrical analysis of the nano-silver paste die-attached power device package at high temperature’. CPES Conf. and Site Visit, 2006.
    165. 165)
      • 166. Joo, S., Baldwin, D.F.: ‘Rapid prototyping of micro-systems packaging using a data-driven chip-first process and nano-particles metal colloids’, Proc. Electronic Components and Technology, ECTC ‘05, 2005, vol. 2, pp. 18591863.
    166. 166)
      • 167. Parylene Properties. Available at http://scscoatings.com/what_is_parylene/parylene_properties.aspx, accessed 8 April 2015.
    167. 167)
      • 168. Hiromasa, M., Keiichi, E., Satoru, K.: ‘Application of silver nano particle to pressureless bonding onto a copper surface – consideration of substitute material for lead solder’. 2014 Eighth Int. Conf. on Integrated Power Systems (CIPS), 25–27 February 2014, vol., no., pp. 15.
    168. 168)
    169. 169)
      • 170. Cao, X., Wang, T., Ngo, K.D.T., et al: ‘Height optimization for a medium-voltage planar package’. Proc. 24th Annual IEEE Applied Power Electronics Conf. Exposition, Washington D.C., February 2009, pp. 479484.
    170. 170)
      • 171. Zhang, Z., Bai, J.G., Lu, G.-Q., et al: ‘Low-temperature Sintering Nanoscale Silver Paste as an High-Temperature package Solution’. CPES Conf. and Site Visit, 2005.
    171. 171)
      • 172. Cyclotene* 3000 Series—Processing Procedures for CYCLOTENE 3000 Series Dry Etch Resins. Available at http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08b4/0901b803808b4ed7.pdf?filepath=/888-00006.pdf&fromPage=GetDoc, accessed April 8, 2015.
    172. 172)
      • 173. Cyclotene* 4000 Series—Processing Procedures for CYCLOTENE 4000 Series Resins-DS3000 Immersion Develop Process. Available at http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08b4/0901b803808b4eda.pdf?filepath=/888-00008.pdf&fromPage=GetDoc. Accessed 9 April 2015.
    173. 173)
      • 174. P84 Polyimide Solution—Technical Information. Available at http://hppolymer.com/pdfs/P84-%20Polyimide%20Solution1.pdf, accessed 9 April 2015.
    174. 174)
      • 175. Davis, J.H., Rees, D.W., Riley, I.H.: ‘Silicone encapsulating and potting materials’. Proc. IEE-B, Electronics Communication Engineering, 1962, vol. 109, no. 21, pp. 266270.
    175. 175)
    176. 176)
      • 177. Durapot Epoxies—High Performance Casting, Embedding and Encapsulating Compounds. Available at http://www.cotronics.com/vo/cotr/pdf/860.pdf, accessed 8 April 2015.
    177. 177)
      • 178. CF-4721—Technical Data Sheet. Available at http://nusil.com/products/ProductProfiles/CF-4721/CF-4721P.pdf, accessed 9 April 2015.
    178. 178)
      • 179. Technical Data Sheet—QSIL 550 2-Part Addition Cure Encapsulant. Available at http://www.acc-silicones.com/content/products/qsil573.ashx, accessed 8 April 2015.
    179. 179)
      • 180. EPM-2422—Technical Data Sheet. Available at http://www.silicone-polymers.com/pdfMaster/EPM-2422P.pdf, accessed 9 April 2015.
    180. 180)
      • 181. R-2188—Technical Data Sheet. Available at http://nusil.com/products/ProductProfiles/R-2188/R-2188P.pdf, accessed 8 April 2015.
    181. 181)
      • 182. Scofield, J.D., Merrett, J.N., Richmond, J., et al: ‘Performance and reliability characteristics of 1200 V, 100 A, 200°C half-bridge SiC MOSFET-JBS diode power modules’. Proc. Int. Conf. High Temperature Electron. (HiTEC), Albuquerque, NM, USA, May 2010.
    182. 182)
    183. 183)
      • 184. Ji, H., Cheng, X., Chen, H., et al: ‘Direct bonding of alumina substrate with copper heat sink in air assisted by ultrasonic vibrations for high power LEDs devices’. 14th Int. Conf. on Electronic Packaging Technology (ICEPT), August 2013, pp. 11581161, 11–14.
    184. 184)
      • 185. Chen, L.Y.: ‘Temperature dependent dielectric properties of polycrystalline AlN substrates with yttrium oxide additives’. High Temperature Electronics Conf. HITEC 2006, May 2006.
    185. 185)
      • 186. Savrun, E., Wu, D.: ‘High-temperature dielectric properties of aluminum nitride’. High Temperature Electronics Conf. HITEC 2006, May 2006.
    186. 186)
      • 187. Mounce, S., McPherson, B., Schupbach, R., et al: ‘Ultra-lightweight, high efficiency sic based power electronic converters for extreme environments’. Aerospace Conf., IEEE, 2006, p. 19.
    187. 187)
      • 188. Beica, R.: ‘Flip chip market and technology trends’. 2013 European Microelectronics Packaging Conf. (EMPC), September 2013, p. 1, 4, 9–12.
    188. 188)
      • 189. van der Duijn Schouten, N.P., Gordon, B.M., McMahon, R.A., et al: ‘Integrated drives using high voltage power ICs’. Eighth Int. Conf. on Power Electronics and Variable Speed Drives, 2000.(IEE Conf. Publ. No. 475), pp. 554559.
    189. 189)
      • 190. Chou, B., Beilin, S., Jiang, H., et al: ‘Multilayer high density flex technology’. Proc. 49th Electronic Components and Technology Conf., 1999.1999, vol., no., pp. 11811189.
    190. 190)
      • 191. Chou, B., Beilin, S., Jiang, H., et al: ‘Multilayer high density flex technology’. Proc. 49th Electronic Components and Technology Conf., 1999, pp. 118111189.
    191. 191)
      • 192. Woo, D.R.M., Hwang, H.Y., Li, J.A.J., et al: ‘High power SiC inverter module packaging solutions for junction temperature over 220°C’. IEEE 16th Electronics Packaging Technology Conf. (EPTC), December 2014, p. 31, 35, 3–5.
    192. 192)
      • 193. Pascariu, G., Cronin, P., Crowley, D.: ‘Next generation electronics packaging utilizing flip chip technology’. IEEE/CPMT/SEMI 28th Int. Electronics Manufacturing Technology Symp. IEMT 2003.July 2003, pp. 4234426, 16–18.
    193. 193)
    194. 194)
      • 195. Bivragh, M., Kelley, M., Van Sinte Jans, J.-B., et al: ‘Thermo-mechanical modelling and thermal performance characterisation of a 3D folded flex module’.  Proc. 56th Electronic Components and Technology Conf. , 2006. 30May 2006–2 June 2006, vol., no., p. 6.
    195. 195)
      • 196. Stockmeier, T., Beckedahl, P., Gobl, C., et al: ‘SKiN: Double side sintering technology for new packages’. ISPSD, 2011.
    196. 196)
    197. 197)
      • 198. Sugawara, Y., Takayama, D., Asano, K.: ‘3 kV 600 a 4H-SiC high temperature diode module’. Proc. Power Semicond. Devices ICs, 2002, pp. 245248.
    198. 198)
      • 199. Nawa, K.: ‘Reliability study for CTE mismatching in build-up structure’. 51st Proc. Electronic Components and Technology Conf., 2001, pp. 11541158.
    199. 199)
      • 200. Chandran, B., Schmidt, W.F., Gordon, M.H.: ‘A novel bonding technique to bond CTE mismatched devices’. Proc. Electronic Components and Technology Conf., 46th, May 1996, pp. 11511158, 28–31.
    200. 200)
      • 201. Gerber, M., Marz, M.: ‘System integration in automotive power systems’. European Conf. on Power Electronics and Applications, September 2005, pp. 1014.
    201. 201)
      • 202. Jain, P.K.: ‘Power electronics for low voltage semiconductor technology: challenges and some possible solutions’. Power Electronics and Motion Control Conf., IPEMC 2004. The 4th International, August 2004, vol. 1, p. 20, 28 14–16.
    202. 202)
      • 203. Kolar, J., Drofenik, U., Biela, J., et al: ‘PWM converter power density barriers’. Power Conversion Conf. – Nagoya, April 2007, PCC '07, pp. 25.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2015.0506
Loading

Related content

content/journals/10.1049/iet-epa.2015.0506
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Errata
An Erratum has been published for this content:
Integrated motor drives: state of the art and future trends
This is a required field
Please enter a valid email address