Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Model predictive torque control of induction motor drives with reduced torque ripple

Model predictive torque control of induction motor drives with reduced torque ripple

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Model predictive torque control (MPTC) is emerging as a high-performance control strategy for induction motor (IM) drives, due to its intuitive nature, flexibility to incorporate constraints and quick dynamic response. However, the implementation of MPTC requires high computational ability and the use of single voltage vector during one control period fails to reduce the torque ripple to the minimal value. This study proposes an improved MPTC for IM drives with reduced torque ripple and low complexity. On the basis of the relationship between stator current and stator flux, the complicated current prediction for each voltage vector is eliminated, reducing the control complexity significantly. Torque ripple reduction is achieved by allocating only a fraction of control period to the active vector selected from conventional MPTC, whereas the rest of time is allocated for a null vector. Two kinds of methods for optimising the duty ratio of the active vector are proposed and evaluated in detail. Presented experimental results prove that, compared with conventional MPTC, the proposed MPTC achieves better steady-state performance by reducing the torque ripple significantly. Meanwhile, the quick dynamic response of conventional MPTC is reserved.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 33. Flach, E., Hoffmann, R., Mutschler, P.: ‘Direct mean torque control of an induction motor’. Proc. EPE, 1997, vol. 3, pp. 672677.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2015.0138
Loading

Related content

content/journals/10.1049/iet-epa.2015.0138
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address