access icon free Self-commissioning of flux linkage curves of synchronous reluctance machines in quasi-standstill condition

This study presents a self-commissioning procedure for the estimation of the flux linkage curves of synchronous reluctance machines. The procedure exploits a quasi-standstill condition obtained by imposing fast torque oscillations. The flux linkage is calculated by means of a pure integration of the voltages and currents. With respect to the existing procedures, the proposed one tackles the problem of the limited knowledge of the core losses in the electrical machine, which is shown to induce erroneous estimation results for the case under investigation. A theoretical analysis supported by extensive laboratory measurements is shown, proving the effectiveness of the proposed approach.

Inspec keywords: magnetic cores; magnetic flux; torque; reluctance machines

Other keywords: electrical machine; pure voltage integration; pure current integration; quasi-standstill condition; self-commissioning procedure; fast torque oscillations; flux linkage curve estimation; synchronous reluctance machines; core losses

Subjects: Magnetic cores; Synchronous machines

References

    1. 1)
      • 22. Alberti, L., Bianchi, N., Bolognani, S.: ‘High frequency dq model of synchronous machines for sensorless control’. Proc. of Energy Conversion Congress and Exposition (ECCE 2014), Pittsburg, PA, USA, September 14–18 2014, pp. 41474153.
    2. 2)
      • 20. Wang, X., Xie, W.: ‘Analysis of losses in a novel IPMSM resulting from high-frequency injection for sensorless control’. Proc. of the IEEE Int. Symp. on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), Munich, Germany, October 17–19 2013, pp. 15.
    3. 3)
      • 15. Senjyu, T., Kinjo, K., Urasaki, N., et al: ‘Parameter measurement for PMSM using adaptive identification’. Proc. of the 2002 IEEE Int. Symp. on Industrial Electronics (ISIE), L'Aquila, Italy, July 7–11 2002, vol. 3, pp. 711716.
    4. 4)
      • 23. Carraro, M., Tinazzi, F., Zigliotto, M.: ‘Estimation of the direct-axis inductance in PM synchronous motor drives at standstill’. Proc. of the IEEE Int. Conf. on Industrial Technology (ICIT), Cape Town, South Africa, February 25–28 2013, pp. 313318.
    5. 5)
    6. 6)
      • 3. Cintron-Rivera, J.G., Babel, A.S., Montalvo-Ortiz, E.E., et al: ‘A simplified characterization method including saturation effects for permanent magnet machines’. Proc. of the XXth Int. Conf. on Electrical Machines (ICEM), Marseille, France, September 2–5 2012, pp. 837843.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 14. Urasaki, N., Senjyu, T., Uezato, K.: ‘Relationship of parallel model and series model for PMSM including iron loss’. Proc. of the IEEE 32nd Annual Power Electronics Specialists Conf. (PESC), Vancouver, BC, Canada, June 17–21 2001, vol. 2, pp. 788793.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 25. Peretti, L., Svechkarenko, D.: ‘Self-commissioning procedure for inductance estimation in an electrical machine’. European Patent application EP2 555 420 A1, August 01, 2011, also available as WO2013017386 (A1), CN103650331 (A), US2014145655 (A1).
    16. 16)
      • 31. Cordier, J., Landsmann, P., Kennel, R.: ‘The influence of magnetic hysteresis on HF injection based inductance calculation’. Proc. of Energy Conversion Congress and Exposition (ECCE 2011), Phoenix, AZ, USA, September 17–22 2011, pp. 638645.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 22. Alberti, L., Bianchi, N., Bolognani, S.: ‘High frequency dqmodel of synchronous machines for sensorless control’. Proc. of Energy Conversion Congress and Exposition (ECCE 2014), Pittsburg, PA, USA, September 14–18 2014, pp. 41474153.
    23. 23)
    24. 24)
    25. 25)
      • 13. Dittrich, A.: ‘Model based identification of the iron loss resistance of an induction machine’. Seventh Int. Conf. on Power Electronics and Variable Speed Drives (Conf. Publ. No. 456), London, UK, September 21–23 1998, vol. 3, pp. 500503.
    26. 26)
      • 27. Odhano, S.A., Bojoi, R., Rosu, S.G., et al: ‘Identification of the magnetic model of permanent magnet synchronous machines using DC-biased low frequency AC signal injection’. Proc. of Energy Conversion Congress and Exposition (ECCE 2014), Pittsburg, PA, USA, September 14–18 2014, pp. 17221728.
    27. 27)
      • 17. Lar, I., Radulescu, M.M.: ‘Equivalent core-loss resistance identification for interior permanent-magnet synchronous machines’. Proc. of the XXth Int. Conf. on Electrical Machines (ICEM), Marseille, France, September 2–5 2012, pp. 16671671.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 24. Landsmann, P., Kennel, R.: ‘Q-axis pulse based identification of the anisotropy displacement over load for surface mounted PMSM’. Proc. of the IEEE Int. Symp. on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), Munich, Germany, October 17–19 2013, pp. 16.
    32. 32)
      • 19. Seilmeier, M., Ebersberger, S., Piepenbreier, B.: ‘Identification of high frequency resistances and inductances for sensorless control of PMSM’. Proc. of the IEEE Int. Symp. on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), Munich, Germany, October 17–19 2013, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2015.0070
Loading

Related content

content/journals/10.1049/iet-epa.2015.0070
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading