access icon free Sliding-mode position control of medium-stroke voice coil motor based on system identification observer

This study presents the performance improvement in the position control of a medium-stroke voice coil motor (VCM) using a sliding-mode controller (SMC) with a system identification observer (SIO). The proposed VCM is developed with a full stroke of 24 mm, and its non-linear electro-magneto-mechanical characteristics are analysed by the three-dimensional finite element method. A least-squares-based SIO is introduced into the VCM control system prior to the position regulation of the SMC in order to achieve a shorter rise time of 29 ms and a smaller steady-state error of <±2 μm under a square-wave excitation of 20 mm amplitude and 0.5 Hz frequency. An experimental verification between the SMC and a traditional proportion–integral–differential controller is carried out. The results demonstrate improved dynamic and static tracking responses in the SMC under load-free, frequency-varying operations.

Inspec keywords: coils; variable structure systems; three-term control; finite element analysis; observers; linear synchronous motors; position control; nonlinear control systems; regression analysis; permanent magnet motors; frequency control

Other keywords: SMC; VCM control system; medium-stroke voice coil motor; steady-state error; 3D finite element method; frequency-varying operation; performance improvement; least-squares-based SIO; nonlinear electro-magneto-mechanical characteristics; static tracking response improvement; system identification observer; sliding-mode controller; proportion-integral-differential controller; dynamic tracking response improvement; load-free operation; sliding-mode position control

Subjects: Synchronous machines; Control of electric power systems; Spatial variables control; Small and special purpose electric machines; Simulation, modelling and identification; Other topics in statistics; Linear machines; Finite element analysis; Nonlinear control systems; Finite element analysis; Multivariable control systems; Other topics in statistics; Frequency control

References

    1. 1)
      • 20. Lascu, C., Boldea, I., Blaabjerg, F.: ‘Super-twisting sliding mode control of torque and flux in permanent magnet synchronous machine drives’. 39th IEEE Annual Conf. Industrial Electronics Society, (IECON), 2013, pp. 31713176.
    2. 2)
      • 19. Lascu, C., Blaabjerg, F.: ‘Super-twisting sliding mode direct torque control of induction machine drives’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 51165122.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 11. Tsai, C.-L., Lee, T.-C., Lin, S.-K.: ‘Friction compensation of a mini voice coil motor by sliding mode control’, IEEE Int. Symp. Ind. Electron., 2009, pp. 609614.
    10. 10)
      • 32. Available at http://www.dspace.de.
    11. 11)
    12. 12)
    13. 13)
      • 14. Boldea, I.: ‘Linear electric machines, drives, and MAGLEVs handbook’ (CRC Press, Boca Raton), 2013.
    14. 14)
    15. 15)
    16. 16)
      • 18. Agarliţă, S.C., Boldea, I., Marignetti, F., et alPosition sensorless control of a linear interior permanent magnet oscillatory machine, with experiments, 2010’. 12th Int. Conf. on Optimization of Electrical and Electronic Equipment, OPTIM, 2010.
    17. 17)
      • 13. Zhang, Z., Yan, P., Lu, C., et al: ‘Time-varying internal model-based tracking control for a voice coil motor servo gantry’. IEEE American Control Conf., 2013, pp. 28722877.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 26. Lennart, L.: ‘System identification – theory for the user’ (Prentice-Hall, USA), 1999.
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2014.0486
Loading

Related content

content/journals/10.1049/iet-epa.2014.0486
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading