access icon free Determination of the inductance parameters for the decoupled dq model of double-star permanent-magnet synchronous machines

Analytical models are the key tools in the model-based control design of electric drives. The inductances together with the stator resistance are the fundamental parameters of these models. In this study three methods to determine the inductances of the decoupled dq model of double-star permanent-magnet (PM) synchronous machines are studied. These methods have commonly been used to determine the inductances of conventional three-phase PM machines. Two of the evaluated methods are based on the phase-variable inductance waveforms and flux linkages and are thus analysed with finite-element analyses only. The third method, based on the analytical stator voltage equations, can be applied straightforwardly with the real drive system supplied with voltage-source inverters (VSIs). This method requires only the knowledge of the rotor position and the existing current measurements of the VSIs that are used for the current control. Experimental results are provided to verify the applicability of the voltage-equation-based method to determine the inductances. On the average, the presented methods provide similar values, but also some discrepancies between the obtained values can be observed. The measured inductance parameters are validated using model-based closed-loop controllers.

Inspec keywords: synchronous machines; inductance measurement; invertors; magnetic flux; electric current control; electric current measurement; stators; closed loop systems; permanent magnet machines; finite element analysis; control system synthesis; machine control; electric drives

Other keywords: flux linkage; phase-variable inductance waveform; current measurement; voltage-equation-based method; voltage-source inverter; VSI; inductance measurement; three-phase PM machine; double-star permanent-magnet synchronous machine; rotor position; model-based closed-loop controller; electric drive; stator resistance; model-based control design; decoupled d–q model; current control; finite-element analyses

Subjects: Impedance and admittance measurement; Finite element analysis; Control system analysis and synthesis methods; Current control; Drives; Control of electric power systems; Synchronous machines; Finite element analysis; Power convertors and power supplies to apparatus; Current measurement

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 2. Bojoi, R., Tenconi, A., Profumo, F., Griva, G., Martinello, D.: ‘Complete analysis and comparative study of digital modulation techniques for dual three-phase AC motor drives’. Proc. IEEE 33rd Annual Power Electronics Specialists Conf., 2002, vol. 2, pp. 851857.
    39. 39)
      • 31. Kang, G.-H., Hong, J.-P., Kim, G.-T., Park, J.-W.: ‘Improved parameter modeling of interior permanent magnet synchronous motor based on finite element analysis’, IEEE Trans. Magn., 2000, 36, (4), pp. 18671870 (doi: 10.1109/20.877809).
    40. 40)
      • 19. Zubia, I., Zatarain, A., Alcalde, C., Ostolaza, X.: ‘In situ electrical parameter identification method for induction wind generators’, IET Electr. Power Appl., 2011, 5, (7), pp. 549557 (doi: 10.1049/iet-epa.2010.0236).
    41. 41)
      • 15. Inoue, Y., Kawaguchi, Y., Morimoto, S., Sanada, M.: ‘Performance improvement of sensorless IPMSM drives in a low-speed region using online parameter identification’, IEEE Trans. Ind. Appl., 2011, 47, pp. 798804 (doi: 10.1109/TIA.2010.2101994).
    42. 42)
      • 9. Jahns, T.M.: ‘Improved reliability in solid-state AC drives by means of multiple independent phase drive units’, IEEE Trans. Ind. Appl., 1980, IA-16, pp. 321331 (doi: 10.1109/TIA.1980.4503793).
    43. 43)
      • 32. Dutta, R., Rahman, M.F.: ‘A comparative analysis of two test methods of measuring d- and q-axes inductances of interior permanent magnet machine’, IEEE Trans. Magn., 2006, 42, (11), pp. 37123718 (doi: 10.1109/TMAG.2006.880994).
    44. 44)
      • 27. Tessarolo, A.: ‘Accurate computation of multiphase synchronous machine inductances based on winding function theory’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 895904 (doi: 10.1109/TEC.2012.2219050).
    45. 45)
      • 29. Lee, J.-Y., Lee, S.-H., Lee, G.-H., Hong, J.-P., Hur, J.: ‘Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor’, IEEE Trans. Magn., 2006, 42, (4), pp. 13031306 (doi: 10.1109/TMAG.2006.871951).
    46. 46)
      • 30. Zhou, P., Lin, D., Wimmer, G., Lambert, N., Cendes, Z.J.: ‘Determination of d–q axis parameters of interior permanent magnet machine’, IEEE Trans. Magn., 2010, 46, pp. 31253128 (doi: 10.1109/TMAG.2010.2043507).
    47. 47)
      • 35. Duran, M., Prieto, J., Barrero, F., Toral, S.: ‘Predictive current control of dual three-phase drives using restrained search techniques’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 32533263 (doi: 10.1109/TIE.2010.2087297).
    48. 48)
      • 6. Andriollo, M., Bettanini, G., Martinelli, G., Morini, A., Tortella, A.: ‘Analysis of double-star permanent-magnet synchronous generators by a general decoupled d–q model’, IEEE Trans. Ind. Appl., 2009, 45, pp. 14161424 (doi: 10.1109/TIA.2009.2023553).
    49. 49)
      • 8. Jones, M., Patkar, F., Levi, E.: ‘Carrier-based pulse-width modulation techniques for asymmetrical six-phase open-end winding drives’, IET Electr. Power Appl., 2013, 7, (6), pp. 441452 (doi: 10.1049/iet-epa.2012.0372).
    50. 50)
      • 18. Bechouche, A., Sediki, H., Ould Abdeslam, D., Haddad, S.: ‘A novel method for identifying parameters of induction motors at standstill using ADALINE’, IEEE Trans. Energy Convers., 2012, 27, (1), pp. 105116 (doi: 10.1109/TEC.2011.2175393).
    51. 51)
      • 37. Knudsen, A.: ‘Extended Park's transformation for 2 × 3-phase synchronous machine and converter phasor model with representation of AC harmonics’, IEEE Trans. Energy Convers., 1995, 10, pp. 126132 (doi: 10.1109/60.372577).
    52. 52)
      • 40. Chen, Y., Zhu, Z., Howe, D.: ‘Calculation of d- and q-axis inductances of PM brushless AC machines accounting for skew’, IEEE Trans. Magn., 2005, 41, (10), pp. 39403942 (doi: 10.1109/TMAG.2005.854976).
    53. 53)
      • 33. Bianchi, N.: ‘Electrical machine analysis using finite elements’ (CRC Press Taylor & Francis Group, 2002).
    54. 54)
      • 38. Kallio, S., Andriollo, M., Tortella, A., Karttunen, J.: ‘Decoupled d–q model of double-star interior permanent magnet synchronous machines’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24862494 (doi: 10.1109/TIE.2012.2216241).
    55. 55)
      • 21. Levi, E., Wang, M.: ‘Online identification of the mutual inductance for vector controlled induction motor drives’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 299305 (doi: 10.1109/TEC.2003.811720).
    56. 56)
      • 36. Duran, M.J., Kouro, S., Wu, B., Levi, E., Barrero, F., Alepuz, S.: ‘Six-phase PMSG wind energy conversion system based on medium voltage multilevel converter’. 2011 European Conf. Power Electronics and Applications (EPE), 2011, pp. 110.
    57. 57)
      • 16. Iyer, K.L.V., Lu, M.K., Lu, X, Kar, N.C.: ‘A novel two-axis theory-based approach towards parameter determination of line-start permanent magnet synchronous machines’, IEEE Trans. Magn., 2012, 48, (11), pp. 42084211 (doi: 10.1109/TMAG.2012.2198208).
    58. 58)
      • 22. Valverde, G., Kyriakides, E., Heydt, G.T., Terzija, V.: ‘Nonlinear estimation of synchronous machine parameters using operating data’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 831839 (doi: 10.1109/TEC.2011.2141136).
    59. 59)
      • 17. Vaseghi, B., Nahid-Mobarakeh, B., Takorabet, N., Meibody-Tabar, F.: ‘Inductance identification and study of PM motor with winding turn short circuit fault’, IEEE Trans. Magn., 2011, 47, (5), pp. 978981 (doi: 10.1109/TMAG.2010.2083639).
    60. 60)
      • 26. Vandoorn, T.L., De Belie, F.M., Vyncke, T.J., Melkebeek, J.A., Lataire, P.: ‘Generation of multisinusoidal test signals for the identification of synchronous-machine parameters by using a voltage-source inverter’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 430439 (doi: 10.1109/TIE.2009.2031135).
    61. 61)
      • 3. Bojoi, R., Lazzari, M., Profumo, F., Tenconi, A.: ‘Digital field-oriented control for dual three-phase induction motor drives’, IEEE Trans. Ind. Appl., 2003, 39, pp. 752760 (doi: 10.1109/TIA.2003.811790).
    62. 62)
      • 24. Riveros, J.A., Yepes, A.G., Barrero, F., et al: ‘Parameter identification of multiphase induction machines with distributed windings – part 2: time-domain techniques’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 10671077 (doi: 10.1109/TEC.2012.2219862).
    63. 63)
      • 14. Dutta, R., Rahman, M.F., Chong, L.: ‘Winding inductances of an interior permanent magnet (IPM) machine with fractional slot concentrated winding’, IEEE Trans. Magn., 2012, 48, (12), pp. 48424849 (doi: 10.1109/TMAG.2012.2203140).
    64. 64)
      • 4. Levi, E., Bojoi, R., Profumo, F., Toliyat, H.A., Williamson, S.: ‘Multiphase induction motor drives – a technology status review’, IET Electr. Power Appl., 2007, 1, pp. 489516 (doi: 10.1049/iet-epa:20060342).
    65. 65)
      • 11. Abuishmais, I., Arshad, W.M., Kanerva, S.: ‘Analysis of VSI–DTC fed 6-phase synchronous machines’. Proc. 13th Power Electronics and Motion Control Conf., 2008, pp. 867873.
    66. 66)
      • 28. Lovelace, E.C., Jahns, T.M., Lang, J.H.: ‘A saturating lumped-parameter model for an interior PM synchronous machine’, IEEE Trans. Ind. Appl., 2002, 38, (3), pp. 645650 (doi: 10.1109/TIA.2002.1003413).
    67. 67)
      • 10. Levi, E.: ‘Multiphase electric machines for variable-speed applications’, IEEE Trans. Ind. Electron., 2008, 55, pp. 18931909 (doi: 10.1109/TIE.2008.918488).
    68. 68)
      • 25. IEEE Guide: ‘Test procedures for synchronous machines’. IEEE Std, 1995, 115-1995.
    69. 69)
      • 1. Zhao, Y., Lipo, T.: ‘Space vector PWM control of dual three-phase induction machine using vector space decomposition’, IEEE Trans. Ind. Appl., 1995, 31, pp. 11001109 (doi: 10.1109/28.464525).
    70. 70)
      • 34. Hadiouche, D., Razik, H., Rezzoug, A.: ‘On the modeling and design of dual-stator windings to minimize circulating harmonic currents for VSI fed AC machines’, IEEE Trans. Ind. Appl., 2004, 40, pp. 506515 (doi: 10.1109/TIA.2004.824511).
    71. 71)
      • 13. Chang, L.: ‘An improved FE inductance calculation for electrical machines’, IEEE Trans. Magn., 1996, 32, pp. 32373245 (doi: 10.1109/20.508387).
    72. 72)
      • 7. Gregor, R., Barrero, F., Toral, S.L., et al: ‘Predictive-space vector PWM current control method for asymmetrical dual three-phase induction motor drives’, IET Electr. Power Appl., 2010, 4, (1), pp. 2634 (doi: 10.1049/iet-epa.2008.0274).
    73. 73)
      • 42. Harnefors, L., Nee, H.-P.: ‘Model-based current control of AC machines using the internal model control method’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 133141 (doi: 10.1109/28.658735).
    74. 74)
      • 39. Chen, H.J., Jing, W.P.: ‘Flux linkage determination of the switched reluctance motor from measurable quantities at steady-state operations’, IET Electr. Power Appl., 2011, 5, (2), pp. 210216 (doi: 10.1049/iet-epa.2010.0037).
    75. 75)
      • 5. Boglietti, A., Bojoi, R., Cavagnino, A., Tenconi, A.: ‘Efficiency analysis of PWM inverter fed three-phase and dual three-phase high frequency induction machines for low/medium power applications’, IEEE Trans. Ind. Electron., 2008, 55, pp. 20152023 (doi: 10.1109/TIE.2008.918489).
    76. 76)
      • 23. Yepes, A.G., Riveros, J.A., Doval-Gandoy, J., et al: ‘Parameter identification of multiphase induction machines with distributed windings – part 1: sinusoidal excitation methods’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 10561066 (doi: 10.1109/TEC.2012.2220967).
    77. 77)
      • 12. Xiang-Jun, Z., Yongbing, Y., Hongtao, Z., Ying, L., Luguang, F., Xu, Y.: ‘Modelling and control of a multi-phase permanent magnet synchronous generator and efficient hybrid 3l-converters for large direct-drive wind turbines’, IET Electr. Power Appl., 2012, 6, (6), pp. 322331 (doi: 10.1049/iet-epa.2011.0145).
    78. 78)
      • 20. Peretti, L., Zigliotto, M.: ‘Automatic procedure for induction motor parameter estimation at standstill’, IET Electr. Power Appl., 2012, 6, (4), pp. 214224 (doi: 10.1049/iet-epa.2010.0262).
    79. 79)
      • 41. Jahns, T.M., Soong, W.L.: ‘Pulsating torque minimization techniques for permanent magnet AC motor drives – a review’, IEEE Trans. Ind. Electron., 1996, 43, (2), pp. 321330 (doi: 10.1109/41.491356).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2013.0195
Loading

Related content

content/journals/10.1049/iet-epa.2013.0195
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading