Computational fluid dynamics modelling of an entire synchronous generator for improved thermal management

Computational fluid dynamics modelling of an entire synchronous generator for improved thermal management

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is the first in a series dedicated to investigating the airflow and thermal management of electrical machines. Owing to the temperature dependent resistive losses in the machine's windings, any improvement in cooling provides a direct reduction in losses and an increase in efficiency. This study focuses on the airflow which is intrinsically linked to the thermal behaviour of the machine as well as the windage power consumed to drive the air through the machine. A full computational fluid dynamics (CFD) model has been used to analyse the airflow around all major components of the machine. Results have been experimentally validated and investigated. At synchronous speed the experimentally tested mass flow rate and windage torque were under predicted by 4% and 7%, respectively, by the CFD. A break-down of torque by component shows that the fan consumes approximately 87% of the windage torque.


    1. 1)
      • 1. Hughes, A.: ‘Electric motors and drives’ (Elsevier Ltd 2006).
    2. 2)
      • 2. Maynes, B.D.J., Kee, R.J., Tindall, C.E., Kenny, R.G.: ‘Simulation of airflow and heat transfer in small alternators using CFD’, IEE Proc.-Electr. Power Appl., 2003, 150, (2), pp. 146152.
    3. 3)
      • 3. Okoro, O.I., Agu, M.U., Chinkuni, E.: ‘Basic principles and functions of electrical machines’,  Pac. J. Sci. Technol., 2006, 7, (1), pp. 4552.
    4. 4)
      • 4. Hay, N., Lampard, D., Pickering, S.J., Roylance, T.F.: ‘Convection heat transfer correlations relevant to cooling situations in electric motors’. ASME Winter Annual Meeting, New Orleans, Louisiana, 1993, vol. 8.
    5. 5)
      • 5. Staton, D.A., Pickering, S.J., Lampard, D.: ‘Recent advancements in the thermal design of electric motors’. Presented at the SMMA 2001 Fall Technical Conf. ‘Emerging Technologies for Electric Motion Industry’, Durham, North Carolina, USA, 3–5 October 2001, pp. 111.
    6. 6)
      • 6. Boglietti, A., Cavagnino, A., Staton, D., Shanel, M., Mueller, M., Mejuto, C.: ‘Evolution and modern approaches for thermal analysis of electrical machines’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 871882.
    7. 7)
      • 7. Dajaku, G., Gerling, D.: ‘An improved lumped parameter thermal model for electrical machines’. 17th Int. Conf. on Electrical Machines (ICEM 2006), 2–5 September 2006.
    8. 8)
      • 8. Gilson, G.M., Pickering, S.J., Hann, D.B., Gerada, C.: ‘Analysis of the end winding heat transfer variation with altitude in electric motors’. Industrial Electronics, 2009 IECON '09 35th Annual Conf. of IEEE Porto, 2009. pp. 25452550.
    9. 9)
      • 9. Gilson, G.M., Raminosoa, T., Pickering, S.J., Gerada, C., Hann, D.B.: ‘A combined electromagnetic and thermal optimisation of an aerospace electric motor’. Int. Conf. Electrical Machines (ICEM), 6–8 September 2010.
    10. 10)
      • 10. Boglietti, A., Cavagnino, A., Staton, D.: ‘Determination of critical parameters in electrical machine thermal models’, IEEE Trans. Ind. Appl., 2008, 44, (4), pp. 11501159.
    11. 11)
      • 11. Boglietti, A., Cavagnino, A., Staton, D.A., Popescu, M.: ‘Experimental assessment of end region cooling arrangements in induction motor end windings’, IET Electr. Power Appl., 2011, 5, (2), pp. 203209.
    12. 12)
      • 12. Wrobel, R., Mellor, P.H., McNeill, N., Staton, D.A.: ‘Thermal performance of an open-slot modular-wound machine with external rotor’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 403411.
    13. 13)
      • 13. Mejuto, C., Mueller, M., Shanel, M., Mebarki, A., Reekie, M., Staton, D.: ‘Improved synchronous machine thermal modelling’. ICEM: 2008 Int. Conf. Electrical Machines, 2009, vol. 1–4, pp. 367372(2409).
    14. 14)
      • 14. Mei, W., Jabbar, M.A., Tay, A.A.O.: ‘Determination of thermal performance of small electric motors’ (IEEE, 2001).
    15. 15)
      • 15. Micallef, C., Pickering, S.J., Simmons, K.A., Bradley, K.J.: ‘Improved cooling in the end region of a strip-wound totally enclosed fan-cooled induction electric machine’, IEEE Trans. Ind. Electron., 2008, 55, (10), pp. 35173524.
    16. 16)
      • 16. Chang, C.-C., Cheng, C.-H., Ke, M.-T., Chen, S.-L.: ‘Experimental and numerical investigations of air cooling for a large-scale motor’, Int. J. Rotat. Mach., 2009, 2009, pp. 17.
    17. 17)
      • 17. Pickering, S.J., Lampard, D., Shanel, M.: ‘Ventilation and heat transfer in a symmetrically ventilated salient pole synchronous machine’. Int. Conf. Power Electronics, Machines and Drives, 2002, no. 487, pp. 462467(661).
    18. 18)
      • 18. Micallef, C.: ‘End winding cooling in electrical machines’. PhD thesis, University of Nottingham, 2006.
    19. 19)
      • 19. Howey, D.A., Holmes, A.S., Pullen, K.R.: ‘Measurement and CFD prediction of heat transfer in air-cooled disc-type electrical machines’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 17161723.
    20. 20)
      • 20. Kleine, S., McClintock, F.A.: ‘Describing uncertainties in single-sample experiments’, Mech. Eng., 1953, 75, pp. 38.
    21. 21)
      • 21. Accessed March 2012.
    22. 22)
      • 22. Ansys. Fluent User Manual.
    23. 23)
      • 23. Shanel, M.: ‘Investigation of rotor cooling in salient pole electrical machines’. PhD thesis, 2002.

Related content

This is a required field
Please enter a valid email address