Design of a computer vision system for a differential spraying operation in precision agriculture using Hebbian learning

Access Full Text

Design of a computer vision system for a differential spraying operation in precision agriculture using Hebbian learning

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

One objective in precision agriculture is to minimise the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. An automatic computer vision system for the detection and differential spraying of weeds in crop fields is discussed. The system involves an image segmentation approach and a decision maker. The first is designed as a sequence of image processing techniques and the second is a decision maker based on the Hebbian learning paradigm under the self-organising criterion. The combination of both and the use of the second are the main findings. The method is compared favourably with other existing strategies achieving a suitable performance.

Inspec keywords: image segmentation; learning (artificial intelligence); computer vision; agrochemicals; agriculture

Other keywords: herbicides; image segmentation; automatic computer vision system; Hebbian learning; image processing; weed management systems; precision agriculture; differential spraying operation

Subjects: Agriculture, forestry and fisheries computing; Knowledge engineering techniques; Agriculture; Computer vision and image processing techniques; Information technology applications

References

    1. 1)
      • Ribeiro, A., Fernández-Quintanilla, C., Barroso, J., García-Alegre, M.C.: `Development of an image analysis system for estimation of weed', Proc. 5th European Conf. on Precision Agriculture (5ECPA), June 2005, Uppsala, Sweden, p. 169–174.
    2. 2)
    3. 3)
      • L. Tian , J.F. Reid , J.W. Hummel . Development of a precision sprayer for site-specific weed management. Trans. Amer. Society Agric. Eng. (ASAE) , 4 , 893 - 900
    4. 4)
      • C.C. Yang , S.O. Prasher , J.A. Landry , H.S. Ramaswamy . Development of an image processing system and a fuzzy algorithm for site-specific herbicide applications. Precision Agric. , 5 - 18
    5. 5)
      • D.O. Hebb . (1949) The organization of behaviour: a neuropsychological theory.
    6. 6)
    7. 7)
    8. 8)
      • R. Gerhards , H. Oebel . Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Res. , 185 - 193
    9. 9)
    10. 10)
      • P. Sneath , R. Sokal . (1973) Numerical taxonomy: the principle and practice of numerical classification.
    11. 11)
      • B. Astrand , A.J. Baerveldt . An agricultural mobile robot with vision-based perception for mechanical weed control. Autonom. Robots , 21 - 35
    12. 12)
    13. 13)
      • J. Barroso , C. Fernández-Quintanilla , C. Ruiz , P. Hernaiz , L.J. Rew . Spatial stability of Avena sterilis ssp. Ludoviciana populations under annual applications of low rates of imazamethbenz. Weed Res. , 178 - 186
    14. 14)
      • J.V. Stafford , A. Srinivasan . (2006) The role of technology in the emergence and current status of precision agriculture, Handbook of precision agriculture.
    15. 15)
      • T. Kohonen . An introduction to neural computing. Neural Netw. , 3 - 16
    16. 16)
    17. 17)
      • Bacher, B.: `Weed density estimation from digital images in spring barley', 2001, PhD, Dpt. Agricultural Sciences, Section of AgroTechnology, The Royal Veterinary and Agricultural University, Denmark.
    18. 18)
      • S. Haykin . Neural networks: a comprehensive foundation.
    19. 19)
    20. 20)
      • R.O. Duda , P.E. Hart , D.G. Stork . Pattern classification.
    21. 21)
      • H.T. Søgaard , H.J. Olsen . Determination of crop rows by image analysis without segmentation. Comput. Electron. Agric. , 141 - 158
    22. 22)
      • R.C. Gonzalez , R.E. Woods , S.L. Eddins . (2004) Digital image processing using matlab.
    23. 23)
      • Radics, L., Glemnitz, M., Hoffmann, J., Czimber, G.: `Composition of weed floras in different agricultural management systems within the European climatic gradient', Proc. 6th European Weed Research Society (EWRS). Workshop on Physical and Cultural Weed Control, 2004, p. 58–64.
    24. 24)
      • K.R. Thorp , L.F. Tian . A Review on remote sensing of weeds in agriculture. Precision Agric. , 477 - 508
    25. 25)
    26. 26)
      • A.J. Pérez , F. López , J.V. Benlloch , S. Christensen . Colour and shape analysis techniques for weed detection in cereal fields. Comput. Electron. Agric. , 197 - 212
    27. 27)
      • A. Tellaeche , P.E. BurgosArtizzu , G. Pajares , A. Ribeiro , C. Fernández-Quintanilla . A new vision-based approach for differential spraying in precision agriculture. Comput. Electron. Agric.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi_20070028
Loading

Related content

content/journals/10.1049/iet-cvi_20070028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading