access icon free Local descriptor for retinal fundus image registration

A feature-based retinal image registration (RIR) technique aligns multiple fundus images and composed of pre-processing, feature point extraction, feature descriptor, matching and geometrical transformation. Challenges in RIR include difference in scaling, intensity and rotation between images. The scale and intensity differences can be minimised with consistent imaging setup and image enhancement during the pre-processing, respectively. The rotation can be addressed with feature descriptor method that robust to varying rotation. Therefore, a feature descriptor method is proposed based on statistical properties (FiSP) to describe the circular region surrounding the feature point. From the experiments on public Fundus Image Registration dataset, FiSP established 99.227% average correct matches for rotations between 0° and 180°. Then, FiSP is paired with Harris corner, scale-invariant feature transform (SIFT), speeded-up robust feature (SURF), Ghassabi's and D-Saddle feature point extraction methods to assess its registration performance and compare with the existing feature-based RIR techniques, namely generalised dual-bootstrap iterative closet point (GDB-ICP), Harris-partial intensity invariant feature descriptor (PIIFD), Ghassabi's–SIFT, H-M 16, H-M 17 and D-Saddle–histogram of oriented gradients (HOG). The combination of SIFT–FiSP registered 64.179% of the image pairs and significantly outperformed other techniques with mean difference between 25.373 and 60.448% (p = <0.001*).

Inspec keywords: medical image processing; feature extraction; transforms; image enhancement; eye; biomedical optical imaging; image registration; image matching; diseases

Other keywords: align multiple fundus images; feature-based RIR techniques; feature descriptor method; retinal fundus image registration; scale invariant feature; image enhancement; retinal image registration; SIFT-FiSP; scale invariant feature transform; geometrical transformation; Harris-partial intensity invariant feature; scaling intensity; statistical properties; public fundus image registration dataset; D-saddle feature point extraction methods; feature-based RIR technique; Ghassabi feature point extraction

Subjects: Optical and laser radiation (biomedical imaging/measurement); Integral transforms; Function theory, analysis; Patient diagnostic methods and instrumentation; Image recognition; Integral transforms; Optical and laser radiation (medical uses); Computer vision and image processing techniques; Biology and medical computing; Physiological optics, vision

References

    1. 1)
      • 1. Brown, D.M., Ciardella, A.: ‘Mosaic fundus imaging in the diagnosis of retinal diseases’, Invest. Ophthalmol. Visual Sci., 2005, 46, (13), pp. 25812581.
    2. 2)
      • 21. Hernandez-Matas, C., Zabulis, X., Argyros, A.A.: ‘Retinal image registration based on keypoint correspondences, spherical eye modeling and camera pose estimation’. 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 2015.
    3. 3)
      • 13. Oishi, A., Hidaka, J., Yoshimura, N.: ‘Quantification of the image obtained with a wide-field scanning ophthalmoscope’, Invest. Ophthalmol. Visual Sci., 2014, 55, (4), pp. 24242431.
    4. 4)
      • 7. Kolar, R., Harabis, V., Odstrcilik, J.: ‘Hybrid retinal image registration using phase correlation’, Imaging Sci. J., 2013, 61, (4), pp. 369384.
    5. 5)
      • 14. Truong, P., Apostolopoulos, S., Mosinska, A., et al: ‘GLAMpoints: greedily learned accurate match points’. Proc. of the IEEE Int. Conf. on Computer Vision, Seoul, South Korea, 2019.
    6. 6)
      • 54. Goshtasby, A.: ‘Image registration by local approximation methods’, Image Vis. Comput., 1988, 6, (4), pp. 255261.
    7. 7)
      • 58. Matsopoulos, G.K., Asvestas, P.A., Mouravliansky, N.A., et al: ‘Multimodal registration of retinal images using self organizing maps’, IEEE Trans. Med. Imaging, 2004, 23, (12), pp. 15571563.
    8. 8)
      • 35. Bay, H., Ess, A., Tuytelaars, T., et al: ‘Speeded-up robust features (SURF)’, Comput. Vis. Image Underst., 2008, 110, (3), pp. 346359.
    9. 9)
      • 3. Lee, B.H., Xu, G., Gopalakrishnan, K., et al: ‘AEGIS-augmented eye laser treatment with region guidance for intelligent surgery’. 11th Asian Conf. on Computer Aided Surgery (ACCAS 2015), Singapore, 2015.
    10. 10)
      • 20. Wang, G., Wang, Z.C., Chen, Y.F., et al: ‘Robust point matching method for multimodal retinal image registration’, Biomed. Signal Proc. Control, 2015, 19, pp. 6876.
    11. 11)
      • 52. Hernandez-Matas, C., Zabulis, X., Triantafyllou, A., et al: ‘FIRE: fundus image registration dataset’, J. Model. Ophthalmol., 2017, 1, (4), pp. 1628.
    12. 12)
      • 45. Fraz, M.M., Remagnino, P., Hoppe, A., et al: ‘An ensemble classification-based approach applied to retinal blood vessel segmentation’, IEEE Trans. Biomed. Eng., 2012, 59, (9), pp. 25382548.
    13. 13)
      • 9. Chanwimaluang, T., Fan, G.L., Fransen, S.R.: ‘Hybrid retinal image registration’, IEEE Trans. Inf. Technol. Biomed., 2006, 10, (1), pp. 129142.
    14. 14)
      • 22. Ghassabi, Z., Shanbehzadeh, J., Mohammadzadeh, A., et al: ‘Colour retinal fundus image registration by selecting stable extremum points in the scale-invariant feature transform detector’, IET Image Process., 2015, 9, (10), pp. 889900.
    15. 15)
      • 55. ‘FIRE: fundus image registration dataset’. Available at https://www.ics.forth.gr/cvrl/fire/, accessed 17 April 2017.
    16. 16)
      • 51. Hoover, A., Kouznetsova, V., Goldbaum, M.: ‘Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response’, IEEE Trans. Med. Imaging, 2000, 19, (3), pp. 203210.
    17. 17)
      • 34. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    18. 18)
      • 50. ‘STARE: structured analysis of the retina’. Available at http://cecas.clemson.edu/~ahoover/stare/, accessed 10 December 2017.
    19. 19)
      • 5. Nakagawa, T., Suzuki, T., Hayashi, Y., et al: ‘Quantitative depth analysis of optic nerve head using stereo retinal fundus image pair’, J. Biomed. Opt., 2008, 13, (6), pp. 110.
    20. 20)
      • 39. Leutenegger, S., Chli, M., Siegwart, R.Y.: ‘BRISK: binary robust invariant scalable keypoints’. Int. Conf. on Computer Vision (ICCV), Barcelona, Spain, 2011.
    21. 21)
      • 4. Adal, K.M., van Etten, P.G., Martinez, J.P., et al: ‘Accuracy assessment of intra- and intervisit fundus image registration for diabetic retinopathy screening accuracy assessment of fundus image registration’, Invest. Ophthalmol. Visual Sci., 2015, 56, (3), pp. 18051812.
    22. 22)
      • 11. Palanisamy, G., Ponnusamy, P., Gopi, V.P.: ‘An improved luminosity and contrast enhancement framework for feature preservation in color fundus images’, Signal. Image. Video. Process., 2019, 13, (4), pp. 719726.
    23. 23)
      • 23. Lee, J.A., Cheng, J., Hai Lee, B., et al: ‘A low-dimensional step pattern analysis algorithm with application to multimodal retinal image registration’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, Massachusetts, 2015.
    24. 24)
      • 32. Sabanovic, E., Matuzevicius, D.: ‘Experimental investigation of feature descriptors for retinal image registration’. 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Riga, Latvia, 2017.
    25. 25)
      • 38. Calonder, M., Lepetit, V., Strecha, C., et al: ‘BRIEF: binary robust independent elementary features’. Computer Vision–ECCV 2010, Crete, Greece, 2010, pp. 778792.
    26. 26)
      • 27. Yang, G., Stewart, C.V., Sofka, M., et al: ‘Registration of challenging image pairs: initialization, estimation, and decision’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (11), pp. 19731989.
    27. 27)
      • 43. Bay, H., Tuytelaars, T., Van Gool, L.: ‘SURF: speeded up robust features’. 9th European Conf. on Computer Vision (ECCV), Graz, Austria, 2006.
    28. 28)
      • 33. Saha, S.K., Xiao, D., Frost, S., et al: ‘Performance evaluation of state-of-the-art local feature detectors and descriptors in the context of longitudinal registration of retinal images’, J. Med. Syst., 2018, 42, (4), p. 57.
    29. 29)
      • 59. Babacan, S.D., Molina, R., Katsaggelos, A.K.: ‘Variational Bayesian super resolution’, IEEE Trans. Image Process., 2011, 20, (4), pp. 984999.
    30. 30)
      • 48. ‘HRF: high-resolution fundus image database’. Available at https://www5.cs.fau.de/research/data/fundus-images/, accessed 10 December 2017.
    31. 31)
      • 12. Sonali Sahu, S., Singh, A.K., et al: ‘An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE’, Opt. Laser Technol., 2019, 110, pp. 8798.
    32. 32)
      • 29. Abràmoff, M.D., Garvin, M.K., Sonka, M.: ‘Retinal imaging and image analysis’, IEEE Rev. Biomed. Eng., 2010, 3, pp. 169208.
    33. 33)
      • 30. Saha, S.K., Xiao, D., Bhuiyan, A., et al: ‘Color fundus image registration techniques and applications for automated analysis of diabetic retinopathy progression: a review’, Biomed. Signal Proc. Control, 2019, 47, pp. 288302.
    34. 34)
      • 53. Torr, P.H., Zisserman, A.: ‘MLESAC: a new robust estimator with application to estimating image geometry’, Comput. Vis. Image Underst., 2000, 78, (1), pp. 138156.
    35. 35)
      • 49. Budai, A., Bock, R., Maier, A., et al: ‘Robust vessel segmentation in fundus images’, Int. J. Biomed. Imaging., 2013, 2013, pp. 111.
    36. 36)
      • 28. Zhang, D., Chen, H., Yin, F., et al: ‘Efficient and distinctive binary descriptor for rotated circular image recognition’, Mach. Vis. Appl., 2019, 30, (4), pp. 749761.
    37. 37)
      • 46. Staal, J., Abràmoff, M.D., Niemeijer, M., et al: ‘Ridge-based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imaging, 2004, 23, (4), pp. 501509.
    38. 38)
      • 2. Bontala, A., Sivaswamy, J., Pappuru, R.R.: ‘Image mosaicing of low quality neonatal retinal images’. 9th IEEE Int. Symp. on Biomedical Imaging (ISBI), Barcelona, Spain, 2012.
    39. 39)
      • 31. Khademi, A., Krishnan, S.: ‘Shift-invariant discrete wavelet transform analysis for retinal image classification’, Med. Biol. Eng. Comput., 2007, 45, (12), pp. 12111222.
    40. 40)
      • 6. Kolar, R., Sikula, V., Base, M.: ‘Retinal image registration using phase correlation’, Anal. Biomed. Signals Images, 2010, 20, pp. 244252.
    41. 41)
      • 25. Gharabaghi, S., Daneshvar, S., Sedaaghi, M.H.: ‘Retinal image registration using geometrical features’, J. Digit. Imaging, 2013, 26, (2), pp. 248258.
    42. 42)
      • 16. Ramli, R., Idris, M.Y.I., Hasikin, K., et al: ‘Histogram-based threshold selection of retinal feature for image registration’. 3rd Int. Conf. on Information Technology & Society (IC-ITS), Penang, Malaysia, 2017.
    43. 43)
      • 18. Saha, S.K., Xiao, D., Frost, S., et al: ‘A two-step approach for longitudinal registration of retinal images’, J. Med. Syst., 2016, 40, (12), p. 277.
    44. 44)
      • 44. ‘CHASE_DB1 retinal image database’. Available at https://blogs.kingston.ac.uk/retinal/chasedb1/, accessed 10 December 2017.
    45. 45)
      • 56. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    46. 46)
      • 47. ‘DRIVE: digital retinal images for vessel extraction’. Available at http://www.isi.uu.nl/Research/Databases/DRIVE/, accessed 10 December 2017.
    47. 47)
      • 42. Harris, C., Stephens, M.: ‘A combined corner and edge detector’. Alvey Vision Conf., Manchester, UK., 1988.
    48. 48)
      • 15. Ramli, R., Idris, M.Y.I., Hasikin, K., et al: ‘Feature-based retinal image registration using D-saddle feature’, J. Healthc. Eng., 2017, 2017, pp. 115.
    49. 49)
      • 8. Legg, P.A., Rosin, P.L., Marshall, D., et al: ‘Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation’, Comput. Med. Imaging Graph., 2013, 37, (7), pp. 597606.
    50. 50)
      • 41. Recommendation ITU-R BT.601-7: ‘International telecommunication union, studio encoding parameters of digital television for standard 4: 3 and wide-screen 16: 9 aspect ratios’,, 2011.
    51. 51)
      • 37. Saha, S., Démoulin, V.: ‘ALOHA: an efficient binary descriptor based on Haar features’. 19th IEEE Int. Conf. on Image Processing, Orlando, Florida, 2012.
    52. 52)
      • 19. Hernandez-Matas, C., Zabulis, X., Argyros, A.A.: ‘Retinal image registration through simultaneous camera pose and eye shape estimation’. 38th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, Florida, 2016.
    53. 53)
      • 36. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR), San Diego, California, 2005.
    54. 54)
      • 10. Chen, J., Tian, J., Lee, N., et al: ‘A partial intensity invariant feature descriptor for multimodal retinal image registration’, IEEE Trans. Biomed. Eng., 2010, 57, (7), pp. 17071718.
    55. 55)
      • 17. Hernandez-Matas, C., Zabulis, X., Triantafyllou, A., et al: ‘Retinal image registration under the assumption of a spherical eye’, Comput. Med. Imaging Graph., 2017, 55, pp. 95105.
    56. 56)
      • 24. Ghassabi, Z., Shanbehzadeh, J., Sedaghat, A., et al: ‘An efficient approach for robust multimodal retinal image registration based on UR-SIFT features and PIIFD descriptors’, Eurasip J. Image Video Process., 2013, 2013, p. 25.
    57. 57)
      • 57. Alahi, A., Ortiz, R., Vandergheynst, P.: ‘FREAK: fast retina keypoint’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, 2012.
    58. 58)
      • 40. Hernandez-Matas, C., Zabulis, X., Argyros, A.A.: ‘An experimental evaluation of the accuracy of keypoints-based retinal image registration’. 39th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, South Korea, 2017.
    59. 59)
      • 26. Tsai, C., Li, C., Yang, G., et al: ‘The edge-driven dual-bootstrap iterative closest point algorithm for registration of multimodal fluorescein angiogram sequence’, IEEE Trans. Med. Imaging, 2010, 29, (3), pp. 636649.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2019.0623
Loading

Related content

content/journals/10.1049/iet-cvi.2019.0623
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading