Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Locally lateral manifolds of normalised Gabor features for face recognition

Locally lateral manifolds of normalised Gabor features for face recognition

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Due to inherent characteristics of multiscale and orientation, normalised Gabor features have been successfully used in face recognition. Various previous works have showcased the strength and feasibility of this approach, especially on its robustness against local variations. However, the projected features are numerous and substantial in dimension, which is largely due to the convolution of multiscale and orientation of wavelets. Such features, when used in practical face recognition, would require relatively lengthy classification process, particularly when it involves computationally extensive local classifier or experts, such as ensembles of local cosine similarity (ELCS) classifier. The authors address this issue by simultaneously reducing the size of Gabor features laterally and locally using a manifold learning method called locally linear embedding (LLE). This method is thus denoted as locally lateral normalised local Gabor feature vector with LLE (LGFV/LN/LLE). Results on several publicly available face datasets reveal the superiority of the authors’ approach in terms of improvements in feature compression of LGFV features by up to a reduction of 95% of total dimensionality while increasing the average classification accuracy by 26%. Altogether, the authors show that their LGFV/LN/LLE augmented by ELCS classifiers delivers equivalent result when compared against the state-of-the-art.

References

    1. 1)
      • 4. Wu, Y., Shah, S.K., Kakadiaris, I.A.: ‘Annotated face model-based alignment: a robust landmark-free pose estimation approach for 3D model registration’’, Mach. Vis. Appl., 2018, 29, (3), pp. 375391.
    2. 2)
      • 56. Cao, Q., Ying, Y., Li, P.: ‘Similarity metric learning for face recognition’. Proc. of Int. Conf. on Computer Vision (ICCV), Sydney, Australia, 2013, pp. 24082415.
    3. 3)
      • 32. Ouyang, A., Liu, Y., Pei, S., et al: ‘A hybrid improved kernel LDA and PNN algorithm for efficient face recognition’, Neurocomputing, 2019, https://doi.org/10.1016/j.neucom.2019.01.117.
    4. 4)
      • 18. Wang, C., Guo, C.: ‘Face recognition based on Gabor-enhanced manifold learning and SVM’. Advances in Neural Networks - ISNN 2010: 7th Int. Symp. on Neural Networks, ISNN 2010, Shanghai, China, June 6–9 2010, 2010, pp. 184191.
    5. 5)
      • 24. Perez, C.A., Castillo, L.E., Cament, L.A.: ‘Illumination compensation method for local matching Gabor face classifier’. Int. Conf. on Optomechatronic Technologies (ISOT) Symp., Toronto, Canada, 2010, pp. 15.
    6. 6)
      • 15. Kamaruzaman, F., Shafie, A.A.: ‘Recognizing faces with normalized local Gabor features and spiking neuron patterns’, Pattern Recognit., 2016, 53, pp. 102115.
    7. 7)
      • 9. Jones, J.P., Palmer, L.A.: ‘An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex,’ (in Eng)’, J. Neurophysiol., 1987, 58, (6), pp. 12331258.
    8. 8)
      • 1. Jain, A.K.: ‘Technology: biometric recognition’, Nature, 2007, 449, pp. 3840.
    9. 9)
      • 5. Tan, H., Yang, B., Ma, Z.: ‘Face recognition based on the fusion of global and local HOG features of face images’, IET Comput. Vis., 2014, 8, (3), pp. 224234.
    10. 10)
      • 55. Li, P., Fu, Y., Mohammed, U., et al: ‘Probabilistic models for inference about identity’, IEEE Trans. Patt. Anal. Mach. Intell., 2012, 34, (1), pp. 144157.
    11. 11)
      • 17. Zheng, Z., Yang, J., Qing, X.: ‘Extended locally linear embedding with Gabor wavelets for face recognition’. AI 2004: Advances in Artificial Intelligence: 17th Australian Joint Conf. on Artificial Intelligence, Cairns, Australia, 2005, pp. 955960.
    12. 12)
      • 20. Liu, C., Wechsler, H.: ‘Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition’, IEEE Trans. Image Process., 2002, 11, (4), pp. 467476.
    13. 13)
      • 12. Manjunath, B. S., Chellappa, R., von der Malsburg, C.: ‘A feature based approach to face recognition’. 1992 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1992. Proc. CVPR ‘92., Champaign, Illinois, USA, 1992, pp. 373-378..
    14. 14)
      • 45. Li, S.Z., Yi, D., Lei, Z., et al: ‘The CASIA NIR-VIS 2.0 face database’. 2013 IEEE Conf. on Computer Vision and Pattern Recognition Workshops, Portland, Oregon, USA, 2013, pp. 348353.
    15. 15)
      • 60. Simonyan, K., Parkhi, O.M., Vedaldi, A., et al: ‘Fisher vector faces in the wild’. Proc. of British Machine Vision Conf. (BMVC), Bristol, UK, 2013, pp. 112.
    16. 16)
      • 2. Li, S.Z.: ‘Encyclopedia of biometrics’ (Springer Science+Business Media, New York, 2009), p. 1433.
    17. 17)
      • 14. Cament, L.A., Castillo, L.E., Perez, J.P., et al: ‘Fusion of local normalization and Gabor entropy weighted features for face identification’, Pattern Recognit., 2014, 47, (2), pp. 568577.
    18. 18)
      • 48. Ojala, T., Pietikaine, M., Maenpaa, T., et al: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    19. 19)
      • 42. Nguyen, H.V., Bai, L.: ‘Cosine similarity metric learning for face verification’. Computer Vision – ACCV 2010: 10th Asian Conf. on Computer Vision, Queenstown, New Zealand, November 8–12 2010, 2011, pp. 709720.
    20. 20)
      • 13. Zhang, W., Shan, S., Gao, W., et al: ‘Local Gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition’. Proc. of the Tenth IEEE Int. Conf. on Computer Vision ICCV 2005, Beijing, China, 2005, vol. 1, pp. 786-791.
    21. 21)
      • 21. Zhang, B., Chen, X., Shan, S., et al: ‘Histogram of Gabor phase patterns: a novel object representation approach for face recognition’, IEEE Trans. Image Process., 2007, 16, (1), pp. 5768.
    22. 22)
      • 38. Yao, H., Chuyi, L., Dan, H., et al: ‘Gabor feature based convolutional neural network for object recognition in natural scene’. 2016 3rd Int. Conf. on Information Science and Control Engineering (ICISCE), Beijing, China, 2016, pp. 386390.
    23. 23)
      • 30. Tan, X., Triggs, B.: ‘Fusing Gabor and LBP feature sets for kernel-based face recognition’. Analysis and Modeling of Faces and Gestures: Third Int. Workshop, AMFG 2007, Rio de Janeiro, Brazil, October 20 2007, 2007, pp. 235249.
    24. 24)
      • 54. Taigman, Y., Wolf, L., Hassner, T.: ‘Multiple one-shots for utilizing class label information’. Proc. of The British Machine Vision Conf. (BMVC), London, UK, 2009, pp. 112.
    25. 25)
      • 49. Ahonen, T., Pietikäinen, M.: ‘Soft histograms for local binary patterns’. Proc. of the Finnish Signal Processing Symp. (FINSIG 2007), Oulu, Finland, 2007, pp. 14.
    26. 26)
      • 59. Barkan, O., Weill, J., Wolf, L., et al: ‘Fast high dimensional vector multiplication face recognition’. Proc. of Int. Conf. on Computer Vision (ICCV), Sydney, Australia, 2013, pp. 19601967.
    27. 27)
      • 40. Roweis, S.T., Saul, L.K.: ‘Nonlinear dimensionality reduction by locally linear embedding’, Science, 2000, 290, (5500), pp. 23232326.
    28. 28)
      • 34. Sun, Y., Wang, X., Tang, X.: ‘Deep learning face representation by joint identification-verification’, eprint arXiv:1406.4773, 2014.
    29. 29)
      • 8. Li, C., Huang, Y., Zhu, L.: ‘Color texture image retrieval based on Gaussian copula models of Gabor wavelets’, Pattern Recognit., 2017, 64, pp. 118129.
    30. 30)
      • 57. Chen, D., Cao, X., Wang, L., et al: ‘Bayesian face revisited: a joint formulation’. Proc. of European Conf. Computer Vision (ECCV), Florence, Italy, 2012, pp. 566579.
    31. 31)
      • 19. Wiskott, L., Fellous, J.M., Kuiger, N., et al: ‘Face recognition by elastic bunch graph matching’, IEEE Trans Pattern Anal Mach Intell, 1997, 19, (7), pp. 775779.
    32. 32)
      • 36. Luan, S., Chen, C., Zhang, B., et al: ‘Gabor convolutional networks’, IEEE Trans Image Process, 2018, 27, pp. 43574366.
    33. 33)
      • 33. Sun, Y., Wang, X., Tang, X.: ‘Deep learning face representation from predicting 10,000 classes’. Presented at the Proc. of the 2014 IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, Ohio, 2014.
    34. 34)
      • 31. Min, W., Fan, M., Li, J., et al: ‘Real-time face recognition based on pre-identification and multi-scale classification’, IET Comput. Vis., 2019, 13, (2), pp. 165171.
    35. 35)
      • 51. Ren, J., Jiang, X., Yuan, J.: ‘Quantized fuzzy LBP for face recognition’. 2015 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 2015, pp. 15031507.
    36. 36)
      • 28. Li, W., Wang, Y., Xu, Z., et al: ‘Weighted contourlet binary patterns and image-based fisher linear discriminant for face recognition’, Neurocomputing, 2017, 267, (Supplement C), pp. 436446.
    37. 37)
      • 27. Shufu, X., Shiguang, S., Xilin, C., et al: ‘‘Fusing local patterns of Gabor magnitude and phase for face recognition’, IEEE Trans Image Process, 2010, 19, (5), pp. 13491361.
    38. 38)
      • 6. Oh, B.S., Oh, K., Teoh, A.B.J., et al: ‘A Gabor-based network for heterogeneous face recognition’, Neurocomputing, Oct 2017, 261, pp. 253265.
    39. 39)
      • 35. Taigman, Y., Yang, M., Ranzato, M.A., et al: ‘Deepface: closing the gap to human-level performance in face verification’. 2014 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, 2014.
    40. 40)
      • 7. Li, C., Huang, Y., Yang, X., et al: ‘Distribution covariance model in the multiple wavelet domain for texture representation’, Pattern Recognit., 2019, 92, pp. 246257.
    41. 41)
      • 16. Li, W.J., Wang, J., Huang, Z.H., et al: ‘LBP-like feature based on Gabor wavelets for face recognition, Int. J. Wavelets Multiresolution Inf. Process., 2017, 15, (5), https://doi.org/10.1142/S0219691317500497.
    42. 42)
      • 37. Alekseev, A., Bobe, A.: ‘Gabornet: Gabor filters with learnable parameters in deep convolutional neural networks’, arXiv e-prints, Accessed on: April 01, 2019, Available at https://ui.adsabs.harvard.edu/abs/2019arXiv190413204A.
    43. 43)
      • 25. Perez, C.A., Cament, L.A., Castillo, L.E.: ‘Methodological improvement on local Gabor face recognition based on feature selection and enhanced Borda count’, Pattern Recognit., 2011, 44, pp. 951963.
    44. 44)
      • 46. Huang, G.B., Ramesh, M., Berg, T., et al: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’, Tech. Rep. 07–49, University of Massachusetts, Amherst, Mass, USA, 2007.
    45. 45)
      • 47. Zhang, B., Shan, S., Chen, X., et al: ‘Histogram of Gabor phase patterns (HGPP): A novel object representation approach for face recognition’, IEEE Trans Image Process, 2007, 16, (1), pp. 5768.
    46. 46)
      • 39. Özbulak, G., Ekenel, H.K.: ‘Initialization of convolutional neural networks by Gabor filters’. 2018 26th Signal Processing and Communications Applications Conf. (SIU), Izmir, Turkey, 2018, pp. 14..
    47. 47)
      • 10. Okada, K., Steffens, J., Maurer, T., et al: ‘The Bochum/USC face recognition system and how it fared in the FERET phase III test’, in Wechsler, H., Phillips, P.J., Bruce, V., et al: (Eds.): ‘Face recognition: from theory to applications’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 1998), pp. 186205.
    48. 48)
      • 29. Li, C., Huang, Y., Xue, Y.: ‘Dependence structure of Gabor wavelets based on copula for face recognition’, Expert Syst Appl, 2019, 137, pp. 453470.
    49. 49)
      • 11. Daugman, J.G.: ‘Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression’, IEEE Trans. Acoust. Speech Signal Process., 1988, 36, (7), pp. 11691179.
    50. 50)
      • 41. Zaman, F.K., Shafie, A.A., Mustafah, Y.M.: ‘Robust face recognition against expressions and partial occlusions’, Int. J. Autom. Comput., 2016, 13, (4), pp. 319337.
    51. 51)
      • 61. Chen, D., Cao, X., Wang, L., et al: ‘Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification’. Proc. of Computer Vision and Pattern Recognition (CVPR), Portland, Oregon, USA, 2013, pp. 5764.
    52. 52)
      • 3. Chen, G., Shao, Y., Tang, C., et al: ‘Deep transformation learning for face recognition in the unconstrained scene’’, Mach. Vis. Appl., 2018, 29, (3), pp. 513523.
    53. 53)
      • 22. Su, Y., Shan, S., Chen, X., et al: ‘Hierarchical ensemble of global and local classifiers for face recognition’, Trans. Img. Proc., 2009, 18, (8), pp. 18851896.
    54. 54)
      • 43. Lee, K.C., Ho, J., Kriegman, D.: ‘Acquiring linear subspaces for face recognition under Variable lighting’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (5), pp. 684698.
    55. 55)
      • 23. Jie, Z., Qiang, J., Nagy, G.: ‘A comparative study of local matching approach for face recognition’, IEEE Trans Image Process, 2007, 16, (10), pp. 26172628.
    56. 56)
      • 52. Yang, Z., Jiang, Y., Wu, Y., et al: ‘Weber binary pattern and Weber ternary pattern for illumination-robust face recognition’. 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conf. (APSIPA), Hong Kong, 2015, pp. 10501053.
    57. 57)
      • 53. Guillaumin, M., Verbeek, J., Schmid, C.: ‘Is that you? Metric learning approaches for face identification’. 2009 IEEE 12th Int. Conf. on Computer Vision, Kyoto, 2009, pp. 498505.
    58. 58)
      • 44. Martinez, A.M., Benavente, R.: ‘The AR Face Database’, CVC Technical Report, June 1998, vol 24.
    59. 59)
      • 50. Liao, S., Law, M.W.K., Chung, A.C.S.: ‘Dominant local binary patterns for texture classification’, IEEE Trans Image Process, 2009, 18, (5), pp. 11071118.
    60. 60)
      • 58. Huang, C., Zhu, S., Yu, K.: ‘Large scale strongly supervised ensemble metric learning, with applications to face verification and retrieval’, NEC Technical Report TR115, 2011.
    61. 61)
      • 26. Perez, C.A., Cament, L.A., Castillo, L.E.: ‘Local matching Gabor entropy weighted face recognition’, 2011 IEEE Int. Conf. on Automatic Face & Gesture Recognition and Workshops (FG 2011), Santa Barbara, California, USA, 2011, pp. 179184.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2019.0531
Loading

Related content

content/journals/10.1049/iet-cvi.2019.0531
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address