Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimisation for image salient object detection based on semantic-aware clustering and CRF

State-of-the-art optimisation methods for salient object detection neglect that saliency maps of different images usually show different imperfections. Therefore, the saliency maps of some images cannot achieve effective optimisation. Based on the observation that the saliency maps of semantically similar images usually show similar imperfections, the authors propose an optimisation method for salient object detection based on semantic-aware clustering and conditional random field (CRF), named CCRF. They first cluster the training images into some clusters using the image semantic features extracted by using a deep convolutional neural network model for image classification. Then for each cluster, they use a CRF to optimise the saliency maps generated by existing salient object detection methods. A grid search method is used to compute the optimal weights of the kernels of the CRF. The saliency maps of the testing images are optimised by the corresponding CRFs with the optimal weights. The experimental results with 13 typical salient object detection methods on four datasets show that the proposed CCRF algorithm can effectively improve the results of a variety of image salient object detection methods and outperforms the compared optimisation methods.

References

    1. 1)
      • 32. Liu, J.-J., Hou, Q., Cheng, M.-M., et al: ‘A simple pooling-based design for real-time salient object detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Long Beach, CA, US, 2019, pp. 39173926.
    2. 2)
      • 4. Niu, Y., Lin, W., Ke, X., et al: ‘Fitting-based optimisation for image visual salient object detection’, IET Comput. Vis., 2017, 11, (2), pp. 161172.
    3. 3)
      • 25. Yang, Y., Li, B., Li, P., et al: ‘A two-stage clustering based 3D visual saliency model for dynamic scenarios’, IEEE Trans. Multimed., 2018, 21, (4), pp. 809820.
    4. 4)
      • 7. Margolin, R., Tal, A., Zelnik-Manor, L.: ‘What makes a patch distinct?’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, US, 2013, pp. 11391146.
    5. 5)
      • 6. Zhu, W., Liang, S., Wei, Y., et al: ‘Saliency optimization from robust background detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, OH, US, 2014, pp. 28142821.
    6. 6)
      • 28. Yang, J., Yang, M.: ‘Top-down visual saliency via joint CRF and dictionary learning’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, RI, US, 2012, pp. 22962303.
    7. 7)
      • 14. Hou, X., Zhang, L.: ‘Saliency detection: A spectral residual approach’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CiteSeerX, NJ, USA, 2007, pp. 18.
    8. 8)
      • 35. Chen, Y., Wang, J., Xia, R., et al: ‘The visual object tracking algorithm research based on adaptive combination kernel’, J. Ambient. Intell. Humaniz. Comput., 2019, 10, pp. 48554867.
    9. 9)
      • 18. Scharfenberger, C., Wong, A., Fergani, K., et al: ‘Statistical textural distinctiveness for salient region detection in natural images’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, US, 2013, pp. 979986.
    10. 10)
      • 43. Wang, L., Ouyang, W., Wang, X., et al: ‘Visual tracking with fully convolutional networks’. Proc. IEEE Int. Conf. on Image Processing, Santiago, Chile, 2015, pp. 31193127.
    11. 11)
      • 5. Li, G., Yu, Y.: ‘Deep contrast learning for salient object detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, US, 2016, pp. 478487.
    12. 12)
      • 40. Ye, L., Liu, Z., Li, J., et al: ‘Co-saliency detection via co-salient object discovery and recovery’, IEEE Signal Process. Lett., 2015, 22, (11), pp. 20732077.
    13. 13)
      • 45. Cheng, M.-M., Prisacariu, V., Zheng, S., et al: ‘Densecut: densely connected CRFs for realtime grabcut’, Comput. Graph. Forum, 2015, 34, (7), pp. 193201.
    14. 14)
      • 33. Zhang, J., Jin, X., Sun, J., et al: ‘Spatial and semantic convolutional features for robust visual object tracking’, Multimedia Tools Appl., 2018, 77, pp. 121.
    15. 15)
      • 24. Zhang, J., Zhang, T., Dai, Y., et al: ‘Deep unsupervised saliency detection: A multiple noisy labeling perspective’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, US, 2018, pp. 90299038.
    16. 16)
      • 46. Zou, W., Kpalma, K., Liu, Z., et al: ‘Segmentation driven low-rank matrix recovery for saliency detection’. Proc. British Machine Vision Conf., Bristol, UK, 2013, pp. 113.
    17. 17)
      • 19. Yan, Q., Xu, L., Shi, J., et al: ‘Hierarchical saliency detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, US, 2013, pp. 11551162.
    18. 18)
      • 2. Li, X., Zhao, L., Wei, L., et al: ‘Deepsaliency: multi-task deep neural network model for salient object detection’, IEEE Trans. Image Process., 2016, 25, (8), pp. 39193930.
    19. 19)
      • 26. Li, B., Liu, Q., Shi, X., et al: ‘Graph-based saliency fusion with superpixel-level belief propagation for 3D fixation prediction’. Proc. IEEE Int. Conf. on Image Processing, Athens, Greece, 2018, pp. 23212325.
    20. 20)
      • 10. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. arXiv preprint arXiv:1409.1556, 2014.
    21. 21)
      • 30. He, S., Tavakoli, H.R., Borji, A., et al: ‘Understanding and visualizing deep visual saliency models’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Long Beach, CA, US, 2019, pp. 1020610215.
    22. 22)
      • 8. Wei, Y., Wen, F., Zhu, W., et al: ‘Geodesic saliency using background priors’. Proc. European Conf. on Computer Vision, Florence, Italy, 2012, pp. 2942.
    23. 23)
      • 31. Wu, R., Feng, M., Guan, W., et al: ‘A mutual learning method for salient object detection with intertwined multi-supervision’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Long Beach, CA, US, 2019, pp. 81508159.
    24. 24)
      • 17. Cheng, M.-M., Mitra, N.J., Huang, X., et al: ‘Global contrast based salient region detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 37, (3), pp. 569582.
    25. 25)
      • 27. Jiang, H., Wang, J., Yuan, Z., et al: ‘Salient object detection: a discriminative regional feature integration approach’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, US, 2013, pp. 20832090.
    26. 26)
      • 36. Zhang, J., Wu, Y., Jin, X., et al: ‘A fast object tracker based on integrated multiple features and dynamic learning rate’, Math. Probl. Eng., 2018, 2018, pp. 114.
    27. 27)
      • 22. Qin, Y., Lu, H., Xu, Y., et al: ‘Saliency detection via cellular automata’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, US, 2015, pp. 110119.
    28. 28)
      • 41. Siahaan, E., Hanjalic, A., Redi, J.A.: ‘Semantic-aware blind image quality assessment’, Signal Process., Image Commun., 2018, 60, pp. 237252.
    29. 29)
      • 15. Harel, J., Koch, C., Perona, P.: ‘Graph-based visual saliency’. Advances in Neural Information Processing Systems, Vancouver, Canada, 2007, pp. 545552.
    30. 30)
      • 29. Liu, N., Han, J., Yang, M.-H.: ‘PiCANet: learning pixel-wise contextual attention for saliency detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, US, 2018, pp. 30893098.
    31. 31)
      • 21. Yang, C., Zhang, L., Lu, H., et al: ‘Saliency detection via graph-based manifold ranking’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, US, 2013, pp. 31663173.
    32. 32)
      • 11. Hou, Q., Cheng, M.-M., Hu, X., et al: ‘Deeply supervised salient object detection with short connections’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, US, 2017, pp. 53005309.
    33. 33)
      • 44. Kr̈ahenb̈uhl, P., Koltun, V.: ‘Efficient inference in fully connected CRFs with Gaussian edge potentials’. Advances in Neural Information Processing Systems, Granada, Spain, 2011, pp. 109117.
    34. 34)
      • 16. Goferman, S., Zelnik-Manor, L., Tal, A.: ‘Context-aware saliency detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 34, (10), pp. 19151926.
    35. 35)
      • 1. Jiang, B., Zhang, L., Lu, H., et al: ‘Saliency detection via absorbing Markov chain’. Proc. IEEE Int. Conf. on Computer Vision, Sydney, Australia, 2013, pp. 16651672.
    36. 36)
      • 34. Chen, Y., Xiong, J., Xu, W., et al: ‘A novel online incremental and decremental learning algorithm based on variable support vector machine’, Cluster Comput., 2018, 22, pp. 111.
    37. 37)
      • 39. Liu, Z., Zou, W., Li, L., et al: ‘Co-saliency detection based on hierarchical segmentation’, IEEE Signal Process. Lett., 2014, 21, (1), pp. 8892.
    38. 38)
      • 13. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Miami, FL, US, 2009, pp. 15971604.
    39. 39)
      • 12. Itti, L., Koch, C., Niebur, E.: ‘A model of saliency-based visual attention for rapid scene analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (11), pp. 12541259.
    40. 40)
      • 42. Zhang, G., Zeng, Z., Zhang, S., et al: ‘Sift matching with CNN evidences for particular object retrieval’, Neurocomputing, 2017, 238, pp. 399409.
    41. 41)
      • 3. Huang, F., Qi, J., Lu, H., et al: ‘Salient object detection via multiple instance learning’, IEEE Trans. Image Process., 2017, 26, (4), pp. 19111922.
    42. 42)
      • 38. Niu, Y., Lin, W., Ke, X.: ‘Cf-based optimisation for saliency detection’, IET Comput. Vis., 2018, 12, (4), pp. 365376.
    43. 43)
      • 20. Peng, H., Li, B., Ling, H., et al: ‘Saliency object detection via structured matrix decomposition’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (4), pp. 818832.
    44. 44)
      • 23. Tu, W.-C., He, S., Yang, Q., et al: ‘Real-time saliency detection with a minimum spanning tree’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, US, 2016, pp. 23342342.
    45. 45)
      • 9. Kim, J., Han, D., Tai, Y.W., et al: ‘Salient region detection via high-dimensional color transform’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, OH, US, 2014, pp. 883890.
    46. 46)
      • 37. Babenko, A., Lempitsky, V.: ‘Aggregating local deep features for image retrieval’. Proc. IEEE Int. Conf. on Computer Vision, Santiago, Chile, 2015, pp. 12691277.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2019.0063
Loading

Related content

content/journals/10.1049/iet-cvi.2019.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address