access icon free Deep learning for multiple object tracking: a survey

Deep learning has been proved effective in multiple object tracking, which confronts the difficulties of frequent occlusions, confusing appearance, in-and-out objects, and lack of enough labelled data. Recently, deep learning based multi-object tracking methods make a rapid progress from representation learning to network modelling due to the development of deep learning theory and benchmark setup. In this study, the authors summarise and analyse deep learning based multi-object tracking methods which are top-ranked in the public benchmark test. First, they investigate functionality of deep networks in these methods, and classify the methods into three categories as description enhancement using deep features, deep network embedding, and end-to-end deep network construction. Second, they review deep network structures in these methods, and detail the usage and training of these networks for multi-object tracking problem. Through experimental comparison of tracking results in the benchmarks in total and by group, they finally show the effectiveness of deep networks for tracking employed in different manners, and compare the advantages of these networks and their robustness under different tracking conditions. Moreover, they analyse the limitations of current methods, and draw some useful conclusions to facilitate the exploration of new directions for multi-object tracking.

Inspec keywords: object detection; neural nets; object tracking; learning (artificial intelligence)

Other keywords: multiobject tracking methods; network modelling; deep learning theory; representation learning; multiple object tracking; tracking conditions; deep network structures; description enhancement; public benchmark test; end-to-end deep network construction

Subjects: Optical, image and video signal processing; Neural computing techniques; Computer vision and image processing techniques

References

    1. 1)
      • 59. Milan, A., Roth, S., Schindler, K.: ‘Continuous energy minimization for multitarget tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (1), pp. 5872.
    2. 2)
      • 48. Chari, V., Lacoste-Julien, S., Laptev, I., et al: ‘On pairwise costs for network flow multi-object tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 55375545.
    3. 3)
      • 89. Wojke, N., Bewley, A.: ‘Deep cosine metric learning for person re-identification’. Proc. IEEE Winter Conf. on Applications of Computer Vision, Lake Tahoe, NV, USA, 2018, pp. 748756.
    4. 4)
      • 25. Valmadre, J., Bertinetto, L., Henriques, J., et al: ‘End-to-end representation learning for correlation filter based tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 50005008.
    5. 5)
      • 8. Chung, D., Tahboub, K., Delp, E.J.: ‘A two stream siamese convolutional neural network for person re-identification’. Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 19922000.
    6. 6)
      • 46. Zhang, L., Li, Y., Nevatia, R.: ‘Global data association for multi-object tracking using network flows’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008, pp. 18.
    7. 7)
      • 82. Wu, Y., Lim, J., Yang, M.H.: ‘Online object tracking: a benchmark’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Portland, OR, USA, 2013, pp. 24112418.
    8. 8)
      • 86. Bae, S.H., Yoon, K.J.: ‘Confidence-based data association and discriminative deep appearance learning for robust online multi-object tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2018, 40, (3), pp. 595610.
    9. 9)
      • 62. Kuo, C.H., Huang, C., Nevatia, R.: ‘Multi-target tracking by on-line learned discriminative appearance models’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010, pp. 685692.
    10. 10)
      • 79. Yilmaz, A., Javed, O., Shah, M.: ‘Object tracking: a survey’, ACM Comput. Surv., 2006, 38, (4), pp. 145.
    11. 11)
      • 95. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al: ‘Generative adversarial nets’. Proc. Advances in Neural Information Processing Systems, Montreal, Canada, 2014, pp. 26722680.
    12. 12)
      • 73. Choi, W.: ‘Near-online multi-target tracking with aggregated local flow descriptor’. Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 30293037.
    13. 13)
      • 24. Danelljan, M., Robinson, A., Khan, F.S., et al: ‘Beyond correlation filters: learning continuous convolution operators for visual tracking’. European Conf. on Computer Vision, Amsterdam, The Netherlands, 2016, pp. 472488.
    14. 14)
      • 13. Ren, S., He, K., Girshick, R.B., et al: ‘Faster R-CNN: towards real-time object detection with region proposal networks’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (6), pp. 11371149.
    15. 15)
      • 92. Cheng, D., Gong, Y., Zhou, S., et al: ‘Person re-identification by multi-channel parts-based CNN with improved triplet loss function’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 13351344.
    16. 16)
      • 43. Tang, S., Andriluka, M., Andres, B., et al: ‘Multiple people tracking by lifted multicut and person reidentification’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 35393548.
    17. 17)
      • 100. Zheng, L., Bie, Z., Sun, Y., et al: ‘Mars: a video benchmark for large-scale person re-identification’. European Conf. Computer Vision, Amsterdam, The Netherlands, 2016, pp. 868884.
    18. 18)
      • 60. Milan, A., Schindler, K., Roth, S.: ‘Multi-target tracking by discrete-continuous energy minimization’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (10), pp. 20542068.
    19. 19)
      • 28. Luo, W., Xing, J., Milan, A., et al: ‘Multiple object tracking: a literature review’, arXiv preprint arXiv:1409. 7618, 2014.
    20. 20)
      • 77. Wang, X.: ‘Intelligent multi-camera video surveillance: a review’, Pattern Recognit. Lett., 2013, 34, (1), pp. 319.
    21. 21)
      • 65. Zhou, X., Li, Y., He, B., et al: ‘GM-PHD-based multi-target visual tracking using entropy distribution and game theory’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 10641076.
    22. 22)
      • 93. Larochelle, H., Murray, I.: ‘The neural autoregressive distribution estimator’. Proc. Int. Conf. on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 2011, pp. 2937.
    23. 23)
      • 31. Tang, S., Andres, B., Andriluka, M., et al: ‘Multi-person tracking by multicut and deep matching’. European Conf. on Computer Vision, Amsterdam, The Netherlands, 2016, pp. 100111.
    24. 24)
      • 54. Dehghan, A., Modiri-Assari, S., Shah, M.: ‘GMMCP tracker: globally optimal generalized maximum multi clique problem for multiple object tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 40914099.
    25. 25)
      • 81. Li, X., Hu, W., Shen, C., et al: ‘A survey of appearance models in visual object tracking’, ACM Trans. Intell. Syst. Technol., 2013, 4, (4), p. 58.
    26. 26)
      • 98. Ondruska, P., Posner, I.: ‘Deep tracking: seeing beyond seeing using recurrent neural networks’. Proc. AAAI, Phoenix, AZ, USA, 2016, pp. 33613367.
    27. 27)
      • 42. Kim, C., Li, F., Ciptadi, A., et al: ‘Multiple hypothesis tracking revisited’. Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 46964704.
    28. 28)
      • 84. Leal-Taixe, L., Milan, A., Reid, I., et al: ‘Motchallenge 2015: towards a benchmark for multi-target tracking’, arXiv preprint arXiv:1504.01942, 2015.
    29. 29)
      • 2. He, K., Zhang, X., Ren, S., et al: ‘Delving deep into rectifiers: surpassing human-level performance on imagenet classification’. Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 10261034.
    30. 30)
      • 38. Schulter, S., Vernaza, P., Choi, W., et al: ‘Deep network flow for multi-object tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 27302739.
    31. 31)
      • 90. Weinzaepfel, P., Revaud, J., Harchaoui, Z., et al: ‘Deepflow: large displacement optical flow with deep matching’. Proc. IEEE Int. Conf. Computer Vision, Sydney, NSW, Australia, 2013, pp. 13851392.
    32. 32)
      • 34. Milan, A., Rezatofighi, S.H., Dick, A.R., et al: ‘Online multi-target tracking using recurrent neural networks’. Proc. AAAI, San Francisco, CA, USA, 2017, vol. 2, pp. 42254232.
    33. 33)
      • 14. Dai, J., Li, Y., He, K., et al: ‘R-FCN: object detection via region-based fully convolutional networks’. Proc. Advances in Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 379387.
    34. 34)
      • 83. Smeulders, A.W., Chu, D.M., Cucchiara, R., et al: ‘Visual tracking: an experimental survey’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (7), pp. 14421468.
    35. 35)
      • 106. Geiger, A., Lenz, P., Urtasun, R.: ‘Are we ready for autonomous driving? The KITTI vision benchmark suite’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 33543361.
    36. 36)
      • 19. Henriques, J.F., Caseiro, R., Martins, P., et al: ‘High-speed tracking with kernelized correlation filters’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (3), pp. 583596.
    37. 37)
      • 91. Held, D., Thrun, S., Savarese, S.: ‘Learning to track at 100 FPS with deep regression networks’. European Conf. on Computer Vision, Amsterdam, The Netherlands, 2016, pp. 749765.
    38. 38)
      • 69. Bae, S.H., Yoon, K.J.: ‘Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 12181225.
    39. 39)
      • 70. Leal-Taixe, L., Fenzi, M., Kuznetsova, A., et al: ‘Learning an image-based motion context for multiple people tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 35423549.
    40. 40)
      • 40. Fang, K., Xiang, Y., Li, X., et al: ‘Recurrent autoregressive networks for online multi-object tracking’. Proc. IEEE Winter Conf. on Applications of Computer Vision, Lake Tahoe, NV, USA, 2018, pp. 466475.
    41. 41)
      • 68. Breitenstein, M.D., Reichlin, F., Leibe, B., et al: ‘Online multiperson tracking-by-detection from a single, uncalibrated camera’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (9), pp. 18201833.
    42. 42)
      • 3. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770778.
    43. 43)
      • 30. Wang, B., Wang, L., Shuai, B., et al: ‘Joint learning of convolutional neural networks and temporally constrained metrics for tracklet association’. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 2016, pp. 18.
    44. 44)
      • 39. Sadeghian, A., Alahi, A., Savarese, S.: ‘Tracking the untrackable: learning to track multiple cues with long-term dependencies’. Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 300311.
    45. 45)
      • 78. Zhu, H., Yuen, K.V., Mihaylova, L., et al: ‘Overview of environment perception for intelligent vehicles’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (10), pp. 25842601.
    46. 46)
      • 67. Khan, Z., Balch, T., Dellaert, F.: ‘MCMC-based particle filtering for tracking a variable number of interacting targets’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (11), pp. 18051819.
    47. 47)
      • 74. Xu, Y., Qin, L., Huang, Q.: ‘Coupling reranking and structured output SVM co-train for multitarget tracking’, IEEE Trans. Circuits Syst. Video Technol., 2016, 26, (6), pp. 10841098.
    48. 48)
      • 71. Xiang, Y., Alahi, A., Savarese, S.: ‘Learning to track: online multi-object tracking by decision making’. Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 47054713.
    49. 49)
      • 66. Zhou, X., Yu, H., Liu, H., et al: ‘Tracking multiple video targets with an improved GM-PHD tracker’, Sensors, 2015, 15, (12), pp. 3024030260.
    50. 50)
      • 21. Nam, H., Han, B.: ‘Learning multi-domain convolutional neural networks for visual tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 42934302.
    51. 51)
      • 108. Kasturi, R., Goldgof, D., Soundararajan, P., et al: ‘Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 319336.
    52. 52)
      • 5. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, CoRR, 2014, abs/1409.1556.
    53. 53)
      • 4. Deng, J., Dong, W., Socher, R., et al: ‘Imagenet: a large-scale hierarchical image database’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248255.
    54. 54)
      • 76. Moeslund, T.B., Granum, E.: ‘A survey of computer vision-based human motion capture’, Comput. Vis. Image Underst., 2001, 81, (3), pp. 231268.
    55. 55)
      • 99. Li, W., Zhao, R., Xiao, T., et al: ‘Deepreid: deep filter pairing neural network for person re-identification’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 152159.
    56. 56)
      • 96. Fernando, T., Denman, S., Sridharan, S., et al: ‘Task specific visual saliency prediction with memory augmented conditional generative adversarial networks’. Proc. IEEE Winter Conf. on Applications of Computer Vision, Lake Tahoe, NV, USA, 2018, pp. 15391548.
    57. 57)
      • 109. Li, Y., Huang, C., Nevatia, R.: ‘Learning to associate: hybrid boosted multi-target tracker for crowded scene’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 29532960.
    58. 58)
      • 35. Chen, L., Ai, H., Shang, C., et al: ‘Online multi-object tracking with convolutional neural networks’. Proc. Int. Conf. on Image Processing, Beijing, China, 2017, pp. 645649.
    59. 59)
      • 58. Milan, A., Schindler, K., Roth, S.: ‘Detection-and trajectory-level exclusion in multiple object tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Portland, OR, USA, 2013, pp. 36823689.
    60. 60)
      • 29. Fang, K.: ‘Track-RNN: joint detection and tracking using recurrent neural networks’. Proc. Advances in Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 18.
    61. 61)
      • 75. Zhan, B., Monekosso, D.N., Remagnino, P., et al: ‘Crowd analysis: a survey’, Mach. Vis. Appl., 2008, 19, (5–6), pp. 345357.
    62. 62)
      • 23. Ma, C., Huang, J.B., Yang, X., et al: ‘Hierarchical convolutional features for visual tracking’. Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 30743082.
    63. 63)
      • 16. Liu, W., Anguelov, D., Erhan, D., et al: ‘SSD: single shot multibox detector’. European Conf. on Computer Vision, Amsterdam, The Netherlands, 2016, pp. 2137.
    64. 64)
      • 37. Son, J., Baek, M., Cho, M., et al: ‘Multi-object tracking with quadruplet convolutional neural networks’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 56205629.
    65. 65)
      • 33. Wojke, N., Bewley, A., Paulus, D.: ‘Simple online and realtime tracking with a deep association metric’. Proc. Int. Conf. on Image Processing, Beijing, China, 2017, pp. 36453649.
    66. 66)
      • 63. Kuo, C.H., Nevatia, R.: ‘How does person identity recognition help multi-person tracking?’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011, pp. 12171224.
    67. 67)
      • 49. Dehghan, A., Tian, Y., Torr, P.H., et al: ‘Target identity-aware network flow for online multiple target tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 11461154.
    68. 68)
      • 20. Chen, D., Zhu, M., Wang, H.: ‘Visual tracking based on the sparse representation of the PCA subspace’, Optoelectron. Lett., 2017, 13, (5), pp. 392396.
    69. 69)
      • 11. Zhao, S., Liu, Y., Han, Y., et al: ‘Pooling the convolutional layers in deep convnets for video action recognition’, IEEE Trans. Circuits Syst. Video Technol., 2018, 28, (8), pp. 18391849.
    70. 70)
      • 27. Li, P., Wang, D., Wang, L., et al: ‘Deep visual tracking: review and experimental comparison’, Pattern Recognit., 2018, 76, pp. 323338.
    71. 71)
      • 9. Zhou, S., Wang, J., Wang, J., et al: ‘Point to set similarity based deep feature learning for person reidentification’. Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 50285037.
    72. 72)
      • 12. Geng, H., Zhang, H., Xue, Y., et al: ‘Semantic image segmentation with fused CNN features’, Optoelectron. Lett., 2017, 13, (5), pp. 381385.
    73. 73)
      • 51. Butt, A.A., Collins, R.T.: ‘Multi-target tracking by Lagrangian relaxation to min-cost network flow’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Portland, OR, USA, 2013, pp. 18461853.
    74. 74)
      • 53. Tang, S., Andres, B., Andriluka, M., et al: ‘Subgraph decomposition for multi-target tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 50335041.
    75. 75)
      • 80. Yang, H., Shao, L., Zheng, F., et al: ‘Recent advances and trends in visual tracking: a review’, Neurocomputing, 2011, 74, (18), pp. 38233831.
    76. 76)
      • 50. Wang, X., Turetken, E., Fleuret, F., et al: ‘Tracking interacting objects using intertwined flows’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, pp. 23122326.
    77. 77)
      • 47. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: ‘Globally-optimal greedy algorithms for tracking a variable number of objects’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011, pp. 12011208.
    78. 78)
      • 15. Redmon, J., Divvala, S.K., Girshick, R.B., et al: ‘You only look once: unified, real-time object detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 779788.
    79. 79)
      • 107. Robicquet, A., Sadeghian, A., Alahi, A., et al: ‘Learning social etiquette: human trajectory understanding in crowded scenes’. European Conf. Computer Vision, Amsterdam, The Netherlands, 2016, pp. 549565.
    80. 80)
      • 72. Reid, D.: ‘An algorithm for tracking multiple targets’, IEEE Trans. Autom. Control, 1979, 24, (6), pp. 843854.
    81. 81)
      • 1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Proc. Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 2012, pp. 10971105.
    82. 82)
      • 55. Wu, M., Peng, X., Zhang, Q., et al: ‘Motion constraint Markov network model for multi-target tracking’, Optoelectron. Lett., 2008, 4, (5), pp. 375378.
    83. 83)
      • 104. Ferryman, J., Shahrokni, A.: ‘PETS2009: dataset and challenge’. IEEE Int. Workshop on Performance Evaluation of Tracking and Surveillance (PETS), Miami, FL, USA, 2009, pp. 16.
    84. 84)
      • 32. Leal-Taixe, L., Canton-Ferrer, C., Schindler, K.: ‘Learning by tracking: siamese CNN for robust target association’. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 2016, pp. 3340.
    85. 85)
      • 22. Li, J., Zhou, X., Chan, S., et al: ‘Object tracking using a convolutional network and a structured output SVM’, Comput. Vis. Media, 2017, 3, (4), pp. 325335.
    86. 86)
      • 102. Dollar, P., Appel, R., Belongie, S., et al: ‘Fast feature pyramids for object detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (8), pp. 15321545.
    87. 87)
      • 7. Liu, W., Wen, Y., Yu, Z., et al: ‘Sphereface: deep hypersphere embedding for face recognition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 67386746.
    88. 88)
      • 94. Gregor, K., Danihelka, I., Mnih, A., et al: ‘Deep autoregressive networks’, arXiv preprint arXiv:1310.8499, 2013.
    89. 89)
      • 52. Berclaz, J., Fleuret, F., Turetken, E., et al: ‘Multiple object tracking using k-shortest paths optimization’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (9), pp. 18061819.
    90. 90)
      • 26. Choi, J., Chang, H.J., Fischer, T., et al: ‘Context-aware deep feature compression for high-speed visual tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 479488.
    91. 91)
      • 44. Xiang, J., Zhang, G., Hou, J., et al: ‘Multiple target tracking by learning feature representation and distance metric jointly’, arXiv preprint arXiv:1802.03252, 2018.
    92. 92)
      • 56. Yang, B., Huang, C., Nevatia, R.: ‘Learning affinities and dependencies for multi-target tracking using a CRF model’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011, pp. 12331240.
    93. 93)
      • 41. Ma, C., Yang, C., Yang, F., et al: ‘Trajectory factory: tracklet cleaving and re-connection by deep siamese Bi-GRU for multiple object tracking’, arXiv preprint arXiv:1804.04555, 2018.
    94. 94)
      • 105. Andriluka, M., Roth, S., Schiele, B.: ‘People-tracking-by-detection and people-detection-by-tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008, pp. 18.
    95. 95)
      • 64. Bar-Shalom, Y.: ‘Tracking and data association’ (Academic Press, Boston, 1988).
    96. 96)
      • 10. Fernando, B., Gavves, E., Oramas, J., et al: ‘Rank pooling for action recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (4), pp. 773787.
    97. 97)
      • 85. Milan, A., Leal-Taixe, L., Reid, I., et al: ‘MOT16: a benchmark for multi-object tracking’, arXiv preprint arXiv:1603.00831, 2016.
    98. 98)
      • 45. Leal-Taixe, L., Milan, A., Schindler, K., et al: ‘Tracking the trackers: an analysis of the state of the art in multiple object tracking’, arXiv preprint arXiv:1704.02781, 2017.
    99. 99)
      • 88. Girshick, R., Donahue, J., Darrell, T., et al: ‘Rich feature hierarchies for accurate object detection and semantic segmentation’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 580587.
    100. 100)
      • 18. Wang, N., Yeung, D.Y.: ‘Learning a deep compact image representation for visual tracking’. Proc. Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 2013, pp. 809817.
    101. 101)
      • 61. Huang, C., Wu, B., Nevatia, R.: ‘Robust object tracking by hierarchical association of detection responses’. European Conf. on Computer Vision, Marseille, France, 2008, pp. 788801.
    102. 102)
      • 6. Zhang, X., Fang, Z., Wen, Y., et al: ‘Range loss for deep face recognition with long-tailed training data’. Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 54195428.
    103. 103)
      • 101. Chen, L., Ai, H., Zhuang, Z., et al: ‘Real-time multiple people tracking with deeply learned candidate selection and person re-identification’. IEEE Int. Conf. on Multimedia and Expo (ICME), San Diego, CA, USA, 2018, pp. 16.
    104. 104)
      • 103. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al: ‘Object detection with discriminatively trained part-based models’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 16271645.
    105. 105)
      • 57. Yang, B., Nevatia, R.: ‘An online learned CRF model for multi-target tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 20342041.
    106. 106)
      • 36. Chu, Q., Ouyang, W., Li, H., et al: ‘Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism’. Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 48464855.
    107. 107)
      • 87. Kim, C., Li, F., Rehg, J.M.: ‘Multi-object tracking with neural gating using bilinear LSTM’. European Conf. on Computer Vision, Munich, Germany, 2018, pp. 200215.
    108. 108)
      • 17. Fan, L., Huang, W., Gan, C., et al: ‘End-to-end learning of motion representation for video understanding’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 18.
    109. 109)
      • 97. Fernando, T., Denman, S., Sridharan, S., et al: ‘Tracking by prediction: a deep generative model for mutli-person localisation and tracking’. Proc. IEEE Winter Conf. on Applications of Computer Vision, Lake Tahoe, NV, USA, 2018, pp. 11221132.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5598
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5598
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading