http://iet.metastore.ingenta.com
1887

Texture-based feature extraction of smear images for the detection of cervical cancer

Texture-based feature extraction of smear images for the detection of cervical cancer

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In India, cervical cancer is the second most common type of cancer in females. Pap smear is a simple cytology test for the detection of cancer in its early stages. To obtain the best results from the Pap smear, expert pathologist are required. Availability of pathologist in India is far below the required numbers, especially in rural parts. In this paper, multiple texture-based features are introduced for the extraction of relevant and informative features from single-cell images. First-order histogram, GLCM, LBP, Laws, and DWT are used for texture feature extraction. These methods help to recognise the contour of the nucleus and cytoplasm. ANN and SVM are used to classify the single-cell images either normal or cancerous based on the trained features. ANN and SVM are used on every single feature as well as on the combination of all features. Best results are obtained with a combination of all features. The system is evaluated on generated dataset MNITJ, containing 330 single cervical cell images and also on publicly available benchmark Herlev data set. Experimental results show that the proposed texture-based features give significantly better results in cervical cancer detection when compared with state of the art shape-based features regarding accuracy.

References

    1. 1)
      • 1. ‘What is cervical cancer: causes, symptoms, treatment and stages’. Available at http://www.medicinenet.com/cervical-cancer/articles, accessed 16 June 2017.
    2. 2)
      • 2. Siegel, R.L., Miller, K.D., Jemal, A.: ‘Cancer statistics, 2017’, CA Cancer J. Clin., 2017, 67, (1), pp. 730.
    3. 3)
      • 3. Sreedevi, A., Javed, R., Dinesh, A.: ‘Epidemiology of cervical cancer with special focus on India’, Int. J. Womens Health, 2015, 7, pp. 405414.
    4. 4)
      • 4. Rawat, K., Rawat, N., Mathur, N., et al: ‘A study of cytological pattern of cervical papanicolaou smears in western Rajasthan, India’, Int. J. Reprod. Contracept. Obstet. Gynecol., 2017, 5, (9), pp. 31863190.
    5. 5)
      • 5. ‘Pap tests and HPV test: screening for cervical cancer’. Available at http://www.nccc-online.org/hpvcervical-cancer/cervical-cancer-screening, accessed 16 June 2017.
    6. 6)
      • 6. Tan, S.Y., Tatsumura, Y.: ‘George Papanicolaou (1883 1962): discoverer of the Pap smear’, Singapore Med. J., 2015, 56, (10), p. 586.
    7. 7)
      • 7. Chankong, T., Theera-Umpon, N., Auephanwiriyakul, S.: ‘Automatic cervical cell segmentation and classification in Pap smears’, Comput. Methods Programs Biomed., 2014, 113, (2), pp. 539556.
    8. 8)
      • 8. Bora, K., Chowdhury, M., Mahanta, L.B., et al: ‘Automated classification of Pap smear images to detect cervical dysplasia’, Comput. Methods Programs Biomed., 2017, 138, pp. 3147.
    9. 9)
      • 9. Sajeena, T.A., Jereesh, A.S.: ‘Automated cervical cancer detection through RGVF segmentation and SVM classification’. Int. Conf. on Computing and Network Communications (CoCoNet), Trivandrum, Kerala, India, 2015, pp. 663669.
    10. 10)
      • 10. Plissiti, M.E., Nikou, C., Charchanti, A.: ‘Automated detection of cell nuclei in Pap smear images using morphological reconstruction and clustering’, IEEE Trans. Inf. Technol. Biomed., 2011, 15, (2), pp. 233241.
    11. 11)
      • 11. Paul, P.R., Bhowmik, M.K., Bhattacharjee, D.: ‘Automated cervical cancer detection using Pap smear images’. Proc. of Fourth Int. Conf. on Soft Computing for Problem Solving, New Delhi, India, 2015, pp. 267278.
    12. 12)
      • 12. Lu, Z., Carneiro, G., Bradley, A.P.: ‘Automated nucleus and cytoplasm segmentation of overlapping cervical cells’. Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, Berlin, Heidelberg, 2013, pp. 452460.
    13. 13)
      • 13. Cheng, F.-H., Hsu, N.-R.: ‘Automated cell nuclei segmentation from microscopic images of cervical smear’. Int. Conf. on Applied System Innovation (ICASI), Okinawa, Japan, 2016, pp. 14.
    14. 14)
      • 14. Chen, Y.-F., Huang, P.-C., Lin, K.-C., et al: ‘Semi-automatic segmentation and classification of pap smear cells’, IEEE. J. Biomed. Health. Inform., 2014, 18, (1), pp. 94108.
    15. 15)
      • 15. Nayar, R., Wilbur, D.C.: ‘The Pap Test and Bethesda 2014: “The reports of my demise have been greatly exaggerated.” (After a quotation from Mark Twain)’, J. Am. Soc. Cytopathol., 2015, 4, (3), pp. 170180.
    16. 16)
      • 16. Plissiti, M.E., Nikou, C., Charchanti, A.: ‘Watershed-based segmentation of cell nuclei boundaries in Pap smear images’. Proc. of the 10th IEEE Int. Conf. on Information Technology and Applications in Biomedicine, Corfu, Greece, 2010, pp. 14.
    17. 17)
      • 17. Kale, A., Aksoy, S.: ‘Segmentation of cervical cell images’. 20th Int. Conf. on Pattern Recognition (ICPR) Istanbul, Istanbul, Turkey, 2010, pp. 23992402.
    18. 18)
      • 18. Pradeep Kumar Kenny, S., Allwin, S.: ‘Detecting prominent textural features for cervical cancer lesions using outlier detection and removal techniques’, J. Emerg. TrendsComput. Inf. Sci., 2014, 5, ISSN 2079-8407.
    19. 19)
      • 19. Plissiti, M.E., Nikou, C., Charchanti, A.: ‘Combining shape, texture and intensity features for cell nuclei extraction in Pap smear images’, Pattern Recognit. Lett., 2011, 32, (6), pp. 838853.
    20. 20)
      • 20. Kaaviya, S., Saranyadevi, V., Nirmala, M.: ‘PAP smear image analysis for cervical cancer detection’. 2015 IEEE Int. Conf. on Engineering and Technology (ICETECH), Coimbatore, India, 2015, pp. 14.
    21. 21)
      • 21. Arya, M., Mittal, N., Singh, G.: ‘Cervical cancer detection using segmentation on Pap smear images’. Proc. of the Int. Conf. on Informatics and Analytics, Puducherry, India, 2016, p. 29.
    22. 22)
      • 22. Li, K., Lu, Z., Liu, W., et al: ‘Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake’, Pattern Recognit., 2012, 45, (4), pp. 12551264.
    23. 23)
      • 23. Ragothaman, S., Narasimhan, S., Basavaraj, M.G., et al: ‘Unsupervised segmentation of cervical cell images using Gaussian mixture model’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops, Las Vegas, 2016, pp. 7075.
    24. 24)
      • 24. Lu, Z., Carneiro, G., Bradley, A.P.: ‘An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells’, IEEE Trans. Image Process., 2015, 24, (4), pp. 12611272.
    25. 25)
      • 25. Lakshmi, G.K., Krishnaveni, K.: ‘Multiple feature extraction from cervical cytology images by Gaussian mixture model’. World Congress on Computing and Communication Technologies (WCCCT), Thiruchirappali, India, 2014, pp. 309311.
    26. 26)
      • 26. Zafari, S., Eerola, T., Sampo, J., et al: ‘Segmentation of overlapping elliptical objects in silhouette images’, IEEE Trans. Image Process., 2015, 24, (12), pp. 59425952.
    27. 27)
      • 27. Mustafa, N., Mat Isa, N.A., Mashor, M.Y.: ‘Automated multicells segmentation of thinprep image using modified seed based region growing algorithm (special issue biosensors: data acquisition, processing and control)’, Int. J. Biomed. Soft Comput. Hum. Sci., Off. J. Biomed. Fuzzy Syst. Assoc., 2009, 14, (2), pp. 4147.
    28. 28)
      • 28. Gençtav, A., Aksoy, S., Ander, S.: ‘Unsupervised segmentation and classification of cervical cell images’, Pattern Recognit., 2012, 45, (12), pp. 41514168.
    29. 29)
      • 29. Song, Y., Zhang, L., Chen, S., et al: ‘Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning’, IEEE Trans. Biomed. Eng., 2015, 62, (10), pp. 24212433.
    30. 30)
      • 30. Lu, Z., Carneiro, G., Bradley, A.P., et al: ‘Evaluation of three algorithms for the segmentation of overlapping cervical cells’, IEEE. J. Biomed. Health. Inform., 2017, 21, (2), pp. 441450.
    31. 31)
      • 31. Zhao, L., Li, K., Wang, M., et al: ‘Automatic cytoplasm and nuclei segmentation for color cervical smear image using an efficient gap-search MRF’, Comput. Biol. Med., 2016, 71, pp. 4656.
    32. 32)
      • 32. Zhang, L., Kong, H., Chin, C.T., et al: ‘Segmentation of cytoplasm and nuclei of abnormal cells in cervical cytology using global and local graph cuts’, Comput. Med. Imaging Graph., 2014, 38, (5), pp. 369380.
    33. 33)
      • 33. Zhao, M., Wu, A., Song, J., et al: ‘Automatic screening of cervical cells using block image processing’, Biomed. Eng. Online, 2016, 15, (1), p. 14.
    34. 34)
      • 34. Mbaga, A.H., Zhijun, P.: ‘Pap smear images classification for early detection of cervical cancer’, Int. J. Comput. Appl., 2015, 118, (7), pp. 1016.
    35. 35)
      • 35. Sukumar, P., Gnanamurthy, R.K.: ‘Computer aided detection of cervical cancer using Pap smear images based on hybrid classifier’, Int. J. Appl. Eng. Res., 2015, 10, (8), pp. 2102121032.
    36. 36)
      • 36. Peng, Y., Park, M., Xu, M., et al: ‘Detection of nuclei clusters from cervical cancer microscopic imagery using C4.5’. 2nd Int. Conf. on Computer Engineering and Technology (ICCET), Chengdu, China, 2010, pp. V3-593V3-597.
    37. 37)
      • 37. Bora, K., Chowdhury, M., Mahanta, L.B., et al: ‘Pap smear image classification using convolutional neural network’. Proc. of the Tenth Indian Conf. on Computer Vision, Graphics and Image Processing, Guwahati, India, 2016, p. 55.
    38. 38)
      • 38. ‘Pap-smear (DTU/Herlev) databases and related studies’. Available at http://mde-lab.aegean.gr/index.php/, accessed 11 April 2003.
    39. 39)
      • 39. Lowitz, G.E.: ‘Can a local histogram really map texture information?’, Pattern Recognit., 1983, 16, (2), pp. 141147.
    40. 40)
      • 40. Haralick, R.M., Shanmugam, K.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, 3, (6), pp. 610621.
    41. 41)
      • 41. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    42. 42)
      • 42. Laws, K.I.: ‘Textured image segmentation’, University of Southern California Los Angeles Image Processing INST, 1980.
    43. 43)
      • 43. Zhang, Q.: ‘Using wavelet network in nonparametric estimation’, IEEE Trans. Neural Netw., 1997, 8, (2), pp. 227236.
    44. 44)
      • 44. Haykin, S.S.: ‘Neural networks and learning machines’, vol. 3 (Pearson, Upper Saddle River, NJ, USA, 2009).
    45. 45)
      • 45. Reed, T.R., Dubuf, J.M.H.: ‘A review of recent texture segmentation and feature extraction techniques’, CVGIP, Image Underst., 1993, 57, (3), pp. 359372.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5349
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5349
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address