Hybrid segmentation method based on multi-scale Gaussian kernel fuzzy clustering with spatial bias correction and region-scalable fitting for breast US images

Hybrid segmentation method based on multi-scale Gaussian kernel fuzzy clustering with spatial bias correction and region-scalable fitting for breast US images

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Automated segmentation of tumors in breast ultrasound (US) images is challenging due to poor image quality, presence of speckle noise, shadowing effects and acoustic enhancement. This paper improves the multi-scale Gaussian kernel induced fuzzy C-means clustering method with spatial bias correction (MsGKFCM_S). Furthermore, it presents a hybrid segmentation method, using both the features of the MsGKFCM_S clustering and active contour driven by a region-scalable fitting energy function. The result obtained from the MsGKFCM_S method is utilised to initialise the contour that spreads to identify the estimated regions. It also helps to estimate the several controlling parameters of the curve evolution process. The proposed approach is evaluated on a database of 127 breast US images consisting of 75 malignant and 52 solid benign cases. The performance of proposed approach is compared with other related techniques, using performance measures such as Jaccard Index, dice similarity, shape similarity, Hausdroff difference, area difference, accuracy and F-measure. Results indicate that the proposed approach can successfully detect lesions in breast US images, with high accuracy of 97.889 and 97.513%. Moreover, the proposed approach has the capability of handling shadowing effects, acoustic enhancement and multiple lesions.


    1. 1)
      • 1. Dora, L., Agrawal, S., Panda, R., et al: ‘Optimal breast cancer classification using Gauss–Newton representation based algorithm’, Expert Syst. Appl., 2017, 85, pp. 134145.
    2. 2)
      • 2. Joo, S., Yang, Y.S., Moon, W.K., et al: ‘Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features’, IEEE Trans. Med. Imaging, 2004, 23, pp. 12921300.
    3. 3)
      • 3. Xian, M., Zhang, Y., Cheng, H.D., et al: ‘Automatic breast ultrasound image segmentation: a survey’, Pattern Recognit., 2018, 79, pp. 340355.
    4. 4)
      • 4. Xian, M., Zhang, Y., Cheng, H.D., et al: ‘A benchmark for breast ultrasound image segmentation (BUSIS)’, arXiv preprint arXiv:1801.03182, 2018.
    5. 5)
      • 5. Noble, J.A., Boukerroui, D.: ‘Ultrasound image segmentation: a survey’, IEEE Trans. Med. Imaging, 2006, 25, (8), pp. 9871010.
    6. 6)
      • 6. Huang, Q., Luo, Y., Zhang, Q.: ‘Breast ultrasound image segmentation: a survey’, Int. J. Comput. Assist. Radiol. Surg., 2017, 12, (3), pp. 493507.
    7. 7)
      • 7. Shao, H., Zhang, Y., Xian, M., et al: ‘A saliency model for automated tumor detection in breast ultrasound images’. IEEE Int. Conf. Image Processing (ICIP), 2015, pp. 14241428.
    8. 8)
      • 8. Gao, L., Yang, W., Liao, Z., et al: ‘Segmentation of ultrasonic breast tumors based on homogeneous patch’, Med. Phys., 2012, 39, (6Part1), pp. 32993318.
    9. 9)
      • 9. Xian, M., Huang, J., Zhang, Y., et al: ‘Multiple-domain knowledge based MRF model for tumor segmentation in breast ultrasound images’. 19th IEEE Int. Conf. Image Processing, 2012, pp. 20212024.
    10. 10)
      • 10. Zhang, Q., Huang, C., Li, C., et al: ‘Ultrasound image segmentation based on multi-scale fuzzy c-means and particle swarm optimization’, Inf. Sci. Control Eng., 2012, pp. 137.
    11. 11)
      • 11. Gupta, D., Anand, R., Tyagi, B.: ‘A hybrid segmentation method based on Gaussian kernel fuzzy clustering and region based active contour model for ultrasound medical images’, Biomed. Signal Process. Control, 2015, 16, pp. 98112.
    12. 12)
      • 12. Zhaoa, F., Liub, H., Fanaa, J.: ‘A multi objective spatial fuzzy clustering algorithm for image segmentation’, Appl. Soft Comput., 2015, 30, pp. 4857.
    13. 13)
      • 13. Lo, C., Shen, Y.W., Huang, C.S., et al: ‘Computer-aided multiview tumor detection for automated whole breast ultrasound’, Ultrason. Imaging, 2014, 36, (1), pp. 317.
    14. 14)
      • 14. Avendi, M., Kheradvar, A., Jafarkhani, H.: ‘A combined deep learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI’, Med. Image Anal., 2016, 30, pp. 108119.
    15. 15)
      • 15. Li, B., Acton, S.T.: ‘Active contour external force using vector field convolution for image segmentation’, IEEE Trans. Image Process., 2007, 16, pp. 20962106.
    16. 16)
      • 16. Kuo, H.C., Giger, M.L., Reiser, I., et al: ‘Level set segmentation of breast masses in contrast-enhanced dedicated breast CT and evaluation of stopping criteria’, J. Digit. Imaging, 2014, 27, (2), pp. 237247.
    17. 17)
      • 17. Xu, F., Xian, M., Cheng, H.D., et al: ‘Unsupervised saliency estimation based on robust hypotheses’. IEEE Winter Conf. Applications of Computer Vision (WACV), March 2016, pp. 16.
    18. 18)
      • 18. Lo, C.M., Chen, R.T., Chang, Y.C., et al: ‘Multi dimensional tumor detection in automated whole breast ultrasound using topographic watershed’, IEEE Trans. Med. Imaging, 2014, 33, pp. 15031511.
    19. 19)
      • 19. Bafna, Y., Verma, K., Panigrahi, L., et al: ‘Automated boundary detection of breast cancer in ultrasound images using watershed algorithm’, ‘Ambient communications and computer systems’ (Springer, Singapore, 2018), pp. 729738.
    20. 20)
      • 20. Panigrahi, L., Verma, K., Singh, B.K.: ‘An enhancement in automatic seed selection in breast cancer ultrasound images using texture features’. IEEE Int. Conf. Advances in Computing, Communications and Informatics (ICACCI), September 2016, pp. 10961102.
    21. 21)
      • 21. Gao, G., Wen, C., Wang, H., et al: ‘Fast multiregion image segmentation using statistical active contours’, IEEE Signal Process. Lett., 2017, 24, pp. 417421.
    22. 22)
      • 22. Chunming, L., Chenyang, X., Changfeng, G., et al: ‘Distance regularized level set evolution and its application to image segmentation’, IEEE Trans. Image Process, 2010, 19, pp. 32433254.
    23. 23)
      • 23. Chunming, L., Chiu-Yen, K., Gore, J., et al: ‘Implicit active contours driven by local binary fitting energy’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007, pp. 17.
    24. 24)
      • 24. Yuan, J.: ‘Active contour driven by region-scalable fitting and local Bhattacharyya distance energies for ultrasound image segmentation’, IET Image Process., 2012, 6, pp. 10751083.
    25. 25)
      • 25. Rastgarpour, M., Shanbehzadeh, J., Zadeh, H.: ‘A hybrid method based on fuzzy clustering and local region-based level set for segmentation of in homogeneous medical images’, J. Med. Syst., 2014, 38, pp. 115.
    26. 26)
      • 26. Madabhushi, A., Metaxas, D.N.: ‘Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions’, IEEE Trans. Med. Imaging, 2003, 22, pp. 155169.
    27. 27)
      • 27. Chen, Y., Yin, R., Flynn, P., et al: ‘Aggressive region growing for speckle reduction in ultrasound images’, Pattern Recognit. Lett., 2003, 24, pp. 677691.
    28. 28)
      • 28. D, C.L.: ‘On active contour models and balloons’, Comput. Vis. Graph. Image Process. Image Underst., 1991, 53, pp. 211218.
    29. 29)
      • 29. D, C.L., Cohen, I.: ‘Finite-element methods for active contour models and balloons for 2-d and 3-d images’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, pp. 11311147.
    30. 30)
      • 30. Xu, C., Prince, J.L.: ‘Snakes, shapes, and gradient vector flow’, IEEE Trans. Image Process., 1998, 7, pp. 359369.
    31. 31)
      • 31. Ray, N., Acton, S.T.: ‘Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours’, IEEE Trans. Med. Imaging, 2004, 23, pp. 14661478.
    32. 32)
      • 32. Sassi, O.B., Sellami, L., Slima, M.B., et al: ‘Multi-slices breast ultrasound lesion segmentation using multi-scale vector field convolution snake’. First Int. Conf. Advanced Technologies for Signal and Image Processing, 2014.
    33. 33)
      • 33. Yang, C., Acton, S.T.: ‘External forces for active contours via multiscale vector field convolution’. IEEE Int. Conf. Image Processing, 2012.
    34. 34)
      • 34. Chan, T.F., Vese, L.A.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, pp. 266277.
    35. 35)
      • 35. Ahmed, M.N., Yamany, S.M., Mohamed, N., et al: ‘A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data’, IEEE Trans. Med. Imaging, 2002, 21, pp. 193199.
    36. 36)
      • 36. Chen, S., Zhang, D.: ‘Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure’, IEEE Trans. Syst. Man Cybern., 2004, 34, pp. 19071916.
    37. 37)
      • 37. Yang, M., Tsai, H.: ‘A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction’, Pattern Recognit. Lett, 2008, 29, pp. 17131725.
    38. 38)
      • 38. Wang, H., Fei, B.: ‘A modified fuzzy c-means classification method using a multiscale diffusion filtering scheme’, Med. Image Anal., 2009, 13, pp. 193202.
    39. 39)
      • 39. Panigrahi, L., Verma, K., Singh, B.K.: ‘Ultrasound image segmentation using a novel multi scale Gaussian kernel fuzzy clustering and multi scale vector field convolution’, Expert Syst. Appl., 2019, 115, pp. 486498.
    40. 40)
      • 40. Li, C., Kao, C.Y., Gore, J.C., et al: ‘Minimization of region-scalable fitting energy for image segmentation’, IEEE Trans. Image Process., 2008, 17, (10), pp. 19401949.
    41. 41)
      • 41. Yu, Y., Acton, S.T.: ‘Speckle reducing anisotropic diffusion’, IEEE Trans. Image Process., 2002, 11, pp. 12601270.
    42. 42)
      • 42. Balocco, S., Gatta, C., Pujol, O., et al: ‘SRBF: speckle reducing bilateral filtering’, Ultrasound Med. Biol., 2010, 36, (8), pp. 13531363.
    43. 43)
      • 43. Paris, S., Kornprobst, P., Tumblin, J., et al: ‘A gentle introduction to bilateral filtering and its applications’, ACM SIGGRAPH 2007 courses, August 2007, p. 1.
    44. 44)
      • 44. He, K., Sun, J., Tang, X.: ‘Guided image filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (6), pp. 13971409.
    45. 45)
      • 45. Fenster, A., Chiu, B.: ‘Evaluation of segmentation algorithms for medical imaging’, IEEE Engineering in Medicine and Biology 27th Annual Conf., Shanghai, China, 2005, pp. 71867189.
    46. 46)
      • 46. Udupa, J., LaBlanc, V., Schmidt, H., et al: ‘Methodology for evaluating image segmentation algorithms’. Proc. SPIE Medical Imaging, 2002, pp. 266277.
    47. 47)
      • 47. Selvan, S., Kavitha, M., Shenbagadevi, S., et al: ‘Feature extraction for characterization of breast lesions in ultrasound echography and elastography’, J. Comput. Sci., 2010, 6, pp. 6774.
    48. 48)
      • 48. Dunn, J.C.: ‘A fuzzy relative of the iso data process and its use in detecting compact well-separated clusters’, J. Cybern., 1973, 3, pp. 3257.
    49. 49)
      • 49. Lal, M., Kaur, L., Gupta, S.: ‘Automatic segmentation of tumors in B-mode breast ultrasound images using information gain based neutrosophic clustering’, J. X-ray Sci. Technol., 2018, 26, pp. 209225.

Related content

This is a required field
Please enter a valid email address