http://iet.metastore.ingenta.com
1887

Palmprint recognition using a modified competitive code with distinctive extended neighbourhood

Palmprint recognition using a modified competitive code with distinctive extended neighbourhood

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In recent years, palmprint recognition has made great progress and many methods have been put forward. The extraction of robust orientation features and finding efficient matching strategies are two key points for palmprint recognition. Traditional coding methods usually only use a dominant filter response to extract orientation features of palmprint images while not taking into account the other useful filter responses. Without increasing the number of filers, this study presents a modified Competitive Code to extract orientation features more accurately, which makes use of the relation between the filter responses. Besides, a distinctive extended eight-pixel neighbourhood method is proposed to select the sample points for matching by extracting the local features. At the matching stage, an effective fusion matching scheme with a double-layer image pyramid is designed to calculate the similarity between two palmprint images. Extensive experiments on four types of public palmprint databases show that the proposed method has excellent performance compared with the other state-of-the-art algorithms.

References

    1. 1)
      • 1. Jain, A.K., Ross, A., Prabhakar, S.: ‘An introduction to biometric recognition’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 420.
    2. 2)
      • 2. Ding, Y., Zhuang, D., Wang, K.: ‘A study of hand vein recognition method’. Proc. IEEE Int. Conf. Mechatronics Automation, Niagara Falls, ON, Canada, 2005, pp. 21062110.
    3. 3)
      • 3. Hu, D., Feng, G., Zhou, Z.: ‘Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition’, Pattern Recognit., 2007, 40, (1), pp. 339342.
    4. 4)
      • 4. Ramalho, M.B., Correia, P.L., Soares, L.D.: ‘Hand-based multimodal identification system with secure biometric template storage’, IET Comput. Vis., 2012, 6, (3), pp. 165173.
    5. 5)
      • 5. Kumar, A., Shekhar, S.: ‘Personal identification using multibiometrics rank-level fusion’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2011, 41, (5), pp. 743752.
    6. 6)
      • 6. Kong, A., Zhang, D., Kamel, M.: ‘A survey of palmprint recognition’, Pattern Recognit., 2009, 42, (7), pp. 14081418.
    7. 7)
      • 7. Zhang, D., Zuo, W.M., Yue, F.: ‘A comparative study of palmprint recognition algorithms’, ACM Comput. Surv., 2012, 41, (1), pp. 137.
    8. 8)
      • 8. Zhang, D., Kong, A., You, J., et al: ‘Online palmprint identification’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (9), pp. 10411050.
    9. 9)
      • 9. Dai, J., Feng, J., Zhou, J.: ‘Robust and efficient ridge-based palmprint matching’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (8), pp. 16181632.
    10. 10)
      • 10. Wang, R., Ramos, D., Veldhuis, R.: ‘Regional fusion for high-resolution palmprint recognition using spectral minutiae representation’, IET Biometrics, 2014, 3, (2), pp. 94100.
    11. 11)
      • 11. Liu, E., Jain, A.K., Tian, J.: ‘A coarse to fine minutiae-based latent palmprint matching’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (10), pp. 23072322.
    12. 12)
      • 12. Zhang, D., Kanhangad, V., Luo, N., et al: ‘Robust palmprint verification using 2D and 3D features’, Pattern Recognit.., 2010, 43, (1), pp. 358368.
    13. 13)
      • 13. Zhang, D., Lu, G., Li, W., et al: ‘Palmprint recognition using 3-D information’, IEEE Trans. Syst. Man Cybern., 2009, 41, (4), pp. 505519.
    14. 14)
      • 14. Li, W., Zhang, L., Zhang, D., et al: ‘Efficient joint 2D and 3D palmprint matching with alignment refinement’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2010, pp. 795801.
    15. 15)
      • 15. Zhang, D., Guo, Z., Lu, G., et al: ‘An online system of multi-spectral palmprint verification’, IEEE Trans Instrum. Meas., 2010, 59, (2), pp. 480490.
    16. 16)
      • 16. Huang, D.S., Jia, W., Zhang, D.: ‘Palmprint verification based on principal lines’, Pattern Recognit., 2008, 41, (4), pp. 13161328.
    17. 17)
      • 17. Kong, A.W.K., Zhang, D.: ‘Competitive coding scheme for palmprint verification’. Proc. 19th Int. Conf. on Pattern Recognition, 2004, pp. 520523.
    18. 18)
      • 18. Jia, W., Huang, D., Zhang, D.: ‘Palmprint verification based on robust line orientation code’, Pattern Recognit., 2008, 41, (5), pp. 15041513.
    19. 19)
      • 19. Kong, A., Zhang, D., Kamel, M.: ‘Palmprint identification using feature-level fusion’, Pattern Recognit., 2006, 29, (3), pp. 478487.
    20. 20)
      • 20. Zuo, W., Lin, Z., Guo, Z., et al: ‘The multiscale competitive code via sparse representation for palmprint verification’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2010, pp. 22652272.
    21. 21)
      • 21. Sun, Z., Tan, T., Wang, Y.: ‘Ordinal palmprint representation for personal identification’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005, pp. 279284.
    22. 22)
      • 22. Guo, Z., Zhang, D., Zhang, L., et al: ‘Palmprint verification using binary orientation co-occurrence vector’, Pattern Recognit. Lett., 2009, 30, (13), pp. 12191227.
    23. 23)
      • 23. Zhang, L., Li, H., Niu, J.: ‘Fragile bits in palmprint recognition’, IEEE Signal Process. Lett., 2012, 19, (10), pp. 663666.
    24. 24)
      • 24. Fei, L., Xu, Y., Zhang, D.: ‘Half-orientation extraction of palmprint features’, Pattern Recogniti. Lett., 2016, 69, pp. 3541.
    25. 25)
      • 25. Luo, Y.T., Zhao, L.Y., Zhang, B.: ‘Local line directional pattern for palmprint recognition’, Pattern Recognit., 2016, 50, pp. 2644.
    26. 26)
      • 26. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    27. 27)
      • 27. Aoyama, S., Ito, K., Aoki, T.: ‘Similarity measure using local phase features and its application to biometric recognition’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2013, pp. 180187.
    28. 28)
      • 28. Xue, F., Zuo, W., Wang, K.: ‘A performance evaluation of filter design and coding schemes for palmprint recognition’. Proc. 19th Int. Conf. on Pattern Recognition, 2008, pp. 14.
    29. 29)
      • 29. Fei, L., Xu, Y., Tang, W.: ‘Double-orientation code and nonlinear matching scheme for palmprint recognition’, Pattern Recognit., 2016, 49, pp. 89101.
    30. 30)
      • 30. Roux, V., Aoyama, S., Ito, K.: ‘Performance improvement of phase-based correspondence matching for palmprint recognition’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 7077.
    31. 31)
      • 31. ‘PolyU Palmprint Database’, ‘Multispectral palmprint database’. Available at http://www.comp.polyu.edu.hk/~biometrics/, accessed May 2018.
    32. 32)
      • 32. ‘IITD Touchless Palmprint Database (version1.0)’. Available at http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm, accessed May 2018.
    33. 33)
      • 33. ‘CASIA Palmprint Database’. Available at http://biometrics.idealtest.org/, accessed May 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5306
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address