http://iet.metastore.ingenta.com
1887

Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms

Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Skin cancer is the most common type of cancer in the world and the incidents of skin cancer have been rising over the past decade. Even with a dermoscopic imaging system, which magnifies the lesion region, detecting and classifying skin lesions by visual examination is laborious due to the complex structures of the lesions. This necessitates the need for an automated skin lesion diagnosis system to enhance the diagnostic capability of dermatologists. In this study, the authors propose an automatic skin lesion segmentation method which can be used as a preliminary step for lesion classification. The proposed method comprises two major steps, namely preprocessing and segmentation. In the preprocessing step, noise such as illumination, hair and rulers are removed using filtering techniques and in the segmentation phase, skin lesions are segmented using the GrabCut segmentation algorithm. The k-means clustering algorithm is then used along with the colour features learnt from the training images to improve the boundaries of the segments. To evaluate the authors’ proposed method, they have used ISIC 2017 challenge dataset and dataset. They have obtained Dice coefficient values of 0.8236 and 0.9139 for ISIC 2017 test dataset and dataset, respectively.

References

    1. 1)
      • 1. Chuang, T.-Y., Popescu, A., Su, W.D., et al: ‘Basal cell carcinoma: a population-based incidence study in Rochester, Minnesota’, J. Am. Acad. Dermatol., 1990, 22, (3), pp. 413417.
    2. 2)
      • 2. Sigurdsson, S., Philipsen, P.A., Hansen, L.K., et al: ‘Detection of skin cancer by classification of Raman spectra’, IEEE Trans. Biomed. Eng., 2004, 51, (10), pp. 17841793.
    3. 3)
      • 3. Camacho, F., Gildea, J., Goldenberg, G., et al: ‘Managing skin cancer’ (Springer, Berlin, Heidelberg, 2010), pp. 1735.
    4. 4)
      • 4. Fleming, M.G., Steger, C., Zhang, J., et al: ‘Techniques for a structural analysis of dermatoscopic imagery’, Comput. Med. Imaging Graph., 1998, 22, (5), pp. 375389.
    5. 5)
      • 5. Grin, C.M., Kopf, A.W., Welkovich, B., et al: ‘Accuracy in the clinical diagnosis of malignant melanoma’, Arch. Dermatol., 1990, 126, (6), pp. 763766.
    6. 6)
      • 6. Morton, C.A., Mackie, R.M.: ‘Clinical accuracy of the diagnosis of cutaneous malignant melanoma’, Br. J. Dermatol., 1998, 138, (2), pp. 283287.
    7. 7)
      • 7. Celebi, M., Iyatomi, H., Schaefer, G., et al: ‘Lesion border detection in dermoscopy images’, Comput. Med. Imaging Graph., 2009, 33, (2), pp. 148153.
    8. 8)
      • 8. Silveira, M., Nascimento, J.C., Marques, J.S., et al: ‘Comparison of segmentation methods for melanoma diagnosis in dermoscopy images’, IEEE J. Sel. Top. Signal Process., 2009, 3, (1), pp. 3545.
    9. 9)
      • 9. Ahn, E., Kim, J., Bi, L., et al: ‘Saliency-based lesion segmentation via background detection in dermoscopic images’, IEEE J. Biomed. Health Inf., 2017, 21, (6), pp. 16851693.
    10. 10)
      • 10. Sadri, A.R., Zekri, M., Sadri, S., et al: ‘Segmentation of dermoscopy images using wavelet networks’, IEEE Trans. Biomed. Eng., 2013, 60, (4), pp. 11341141.
    11. 11)
      • 11. Kehichian, R., Gong, H., Revenu, M., et al: ‘New data model for graph-cut segmentation: application to automatic melanoma delineation’. 2014 IEEE Int. Conf. on Image Processing (ICIP), Paris, France, October 2014, pp. 892896.
    12. 12)
      • 12. Abbas, Q., Fondon, I., Rashid, M.: ‘Unsupervised skin lesions border detection via two-dimensional image analysis’, Comput. Methods Programs Biomed., 2011, 104, (3), pp. e1e15.
    13. 13)
      • 13. Pennisi, A., Bloisi, D.D., Nardi, D., et al: ‘Skin lesion image segmentation using Delaunay triangulation for melanoma detection’, Comput. Med. Imaging Graph., 2016, 52, pp. 89103.
    14. 14)
      • 14. Ma, Z., Tavares, J.M.R.S.: ‘A novel approach to segment skin lesions in dermoscopic images based on a deformable model’, IEEE J. Biomed. Health Inf., 2016, 20, (2), pp. 615623.
    15. 15)
      • 15. Abbas, Q., Celebi, M.E., Fondon Garcia, I., et al: ‘Lesion border detection in dermoscopy images using dynamic programming’, Skin Res. Technol., 2011, 17, (1), pp. 91100.
    16. 16)
      • 16. Bi, L., Kim, J., Ahn, E., et al: ‘Automated skin lesion segmentation via image-wise supervised learning and multi-scale superpixel based cellular automata’. 2016 IEEE 13th Int. Symp. on Biomedical Imaging (ISBI), Prague, Czech Republic, April 2016, pp. 10591062.
    17. 17)
      • 17. Garnavi, R., Aldeen, M., Celebi, M.E., et al: ‘Border detection in dermoscopy images using hybrid thresholding on optimized color channels’, Comput. Med. Imaging Graph., 2011, 35, (2), pp. 105115.
    18. 18)
      • 18. Gomez, D.D., Butakoff, C., Ersboll, B.K., et al: ‘Independent histogram pursuit for segmentation of skin lesions’, IEEE Trans. Biomed. Eng., 2008, 55, (1), pp. 157161.
    19. 19)
      • 19. Yuksel, M.E., Borlu, M.: ‘Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic’, IEEE Trans. Fuzzy Syst., 2009, 17, (4), pp. 976982.
    20. 20)
      • 20. Fan, H., Xie, F., Li, Y., et al: ‘Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold’, Comput. Biol. Med., 2017, 85, pp. 7585.
    21. 21)
      • 21. Zhou, H., Schaefer, G., Sadka, A.H., et al: ‘Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images’, IEEE J. Sel. Top. Signal Process., 2009, 3, (1), pp. 2634.
    22. 22)
      • 22. Suer, S., Kockara, S., Mete, M.: ‘An improved border detection in dermoscopy images for density based clustering’, BMC Bioinf., 2011, 12, (10), p. S12.
    23. 23)
      • 23. Fengying, X., Alan, C.B.: ‘Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm’, Pattern Recognit., 2013, 46, (3), pp. 10121019.
    24. 24)
      • 24. Celebi, M.E., Zornberg, A.: ‘Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification’, IEEE Syst. J., 2014, 8, (3), pp. 980984.
    25. 25)
      • 25. Celebi, M., Kingravi, H., Iyatomi, H., et al: ‘Border detection in dermoscopy images using statistical region merging’, Skin Res. Technol., 2008, 14, (3), pp. 347353.
    26. 26)
      • 26. Abbas, Q., Celebi, M.E., Garca, I.F.: ‘Hair removal methods: a comparative study for dermoscopy images’, Biomed. Signal Proc. Control, 2011, 6, (4), pp. 395404.
    27. 27)
      • 27. Bahreyni, T.M.T., Reza, P.H., Hoda, Z., et al: ‘An effective hair removal algorithm for dermoscopy images’, Skin Res. Technol., 2013, 19, (3), pp. 230235.
    28. 28)
      • 28. Bozorgtabar, B., Sedai, S., Roy, P.K., et al: ‘Skin lesion segmentation using deep convolution networks guided by local unsupervised learning’, IBM J. Res. Dev., 2017, 61, (4), pp. 6:16:8.
    29. 29)
      • 29. Bi, L., Kim, J., Ahn, E., et al: ‘Dermoscopic image segmentation via multistage fully convolutional networks’, IEEE Trans. Biomed. Eng., 2017, 64, (9), pp. 20652074.
    30. 30)
      • 30. Yu, L., Chen, H., Dou, Q., et al: ‘Automated melanoma recognition in dermoscopy images via very deep residual networks’, IEEE Trans. Med. Imaging, 2017, 36, (4), pp. 9941004.
    31. 31)
      • 31. Jafari, M.H., Karimi, N., Nasr-Esfahani, E., et al: ‘Skin lesion segmentation in clinical images using deep learning’. 23rd Int. Conf. on Pattern Recognition (ICPR), Cancun, Mexico, December 2016, pp. 337342.
    32. 32)
      • 32. George, Y., Aldeen, M., Garnavi, R.: ‘Skin hair removal for 2D psoriasis images’. 2015 Int. Conf. on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, Australia, November 2015, pp. 18.
    33. 33)
      • 33. Maglogiannis, I., Delibasis, K.: ‘Hair removal on dermoscopy images’. 2015 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, August 2015, pp. 29602963.
    34. 34)
      • 34. Gutman, D., Codella, N.C.F., Celebi, E., et al: ‘Skin lesion analysis toward melanoma detection: a challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC)’, CoRR, vol. abs/1605.01397, 2016.
    35. 35)
      • 35. Mendonca, T., Ferreira, P.M., Marques, J.S., et al: ‘Ph2 – a dermoscopic image database for research and benchmarking’. 2013 35th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, July 2013, pp. 54375440.
    36. 36)
      • 36. Pizer, S.M., Amburn, E.P., Austin, J.D., et al: ‘Adaptive histogram equalization and its variations’, Comput. Vision Graph. Image Process., 1987, 39, (3), pp. 355368.
    37. 37)
      • 37. Zuiderveld, K.: ‘Graphics gems iv’, in Heckbert, P.S. (Ed.): ‘Contrast limited adaptive histogram equalization’ (Academic Press Professional, Inc., San Diego, CA, USA, 1994), pp. 474485.
    38. 38)
      • 38. Frangi, A.F., Niessen, W.J., Vincken, K.L., et al: ‘Multiscale vessel enhancement filtering’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 1998), pp. 130137.
    39. 39)
      • 39. Telea, A.: ‘An image inpainting technique based on the fast marching method’, J. Graph. Tools, 2004, 9, (1), pp. 2334.
    40. 40)
      • 40. Boykov, Y.Y., Jolly, M.P.: ‘Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images’. Proc. Eighth IEEE Int. Conf. on Computer Vision, ICCV 2001, Vancouver, Canada, 2001, vol. 1, pp. 105112.
    41. 41)
      • 41. Forgy, E.: ‘Cluster analysis of multivariate data: efficiency versus interpretability of classification’, Biometrics, 1965, 21, (3), pp. 768769.
    42. 42)
      • 42. Jancey, R.: ‘Multidimensional group analysis’, Aust. J. Bot., 1966, 14, (1), pp. 127130.
    43. 43)
      • 43. Arthur, D., Vassilvitskii, S.: ‘k-means++: the advantages of careful seeding’. Proc. of the Eighteenth Annual ACM-SIAM Symp. on Discrete Algorithms, ser. SODA ‘07, Philadelphia, PA, USA, 2007, pp. 10271035.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5289
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address