Comprehensive computer-aided diagnosis for breast T1-weighted DCE-MRI through quantitative dynamical features and spatio-temporal local binary patterns

Comprehensive computer-aided diagnosis for breast T1-weighted DCE-MRI through quantitative dynamical features and spatio-temporal local binary patterns

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) is a valid complementary diagnostic method for early detection and diagnosis of breast cancer. However, due to the amount of data, the examination is difficult without the support of a computer-aided detection and diagnosis (CAD) system. Since magnetic resonance imaging data includes different tissues and patient movements (i.e. breathing) may introduce artefacts during acquisition, CADs need some stages aimed to identify breast parenchyma and to reduce motion artefacts. Among the major issues in developing a fully automated CAD, there are the accurate segmentation of lesions in regions of interest and their consequent staging (classification). This work introduces breast lesion automatic detection and diagnosis system (BLADeS), a comprehensive fully automated breast CAD aimed to support the radiologist during the patient diagnosis. The authors propose a hierarchical architecture that implements modules for breast segmentation, attenuation of motion artefacts, localisation of lesions and, finally, classification according to their malignancy. Performance was evaluated on 42 patients with histopathologically proven lesions, performing cross-validation to ensure a fair comparison. Results show that BLADeS can be successfully used to perform a fully automated breast lesion diagnosis starting from T1-weighted DCE-MRI, without requiring any operator interaction in any of the processing stages.


    1. 1)
      • 1. Siegel, R.L., Miller, K.D., Jemal, A.: ‘Cancer statistics, 2018’, CA Cancer J. Clin., 2018, 68, pp. 730.
    2. 2)
      • 2. Zoorob, R., Anderson, R., Cefalu, C., et al: ‘Cancer screening guidelines’, Am. Fam. Physician, 2001, 63, pp. 11011112.
    3. 3)
      • 3. Levman, J., Leung, T., Causer, P., et al: ‘Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines’, IEEE Trans. Med. Imaging, 2008, 27, pp. 688696.
    4. 4)
      • 4. Olsen, O., Gøtzsche, P.C.: ‘Cochrane review on screening for breast cancer with mammography’, Lancet, 2001, 358, pp. 13401342.
    5. 5)
      • 5. Twellmann, T., Saalbach, A., Müller, C., et al: ‘Detection of suspicious lesions in dynamic contrast enhanced MRI data’. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society, 2004, vol. 1, pp. 454457.
    6. 6)
      • 6. Gilbert, F.J., Astley, S.M., McGee, M.A., et al: ‘Single reading with computer-aided detection and double reading of screening mammograms in the United Kingdom national breast screening program’, Radiology, 2006, 241, pp. 4753.
    7. 7)
      • 7. Gromet, M.: ‘Comparison of computer-aided detection to double reading of screening mammograms: review of 231,221 mammograms’, AJR Am. J. Roentgenol., 2008, 190, pp. 854859.
    8. 8)
      • 8. Brem, R.F., Baum, J., Lechner, M., et al: ‘Improvement in sensitivity of screening mammography with computer-aided detection: a multi-institutional trial’, AJR Am. J. Roentgenol., 2003, 181, pp. 687693.
    9. 9)
      • 9. Fenton, J.J., Taplin, S.H., Carney, P.A., et al: ‘Influence of computer-aided detection on performance of screening mammography’, N. Engl. J. Med., 2007, 356, pp. 13991409.
    10. 10)
      • 10. Marrone, S., Piantadosi, G., Fusco, R., et al: ‘Automatic lesion detection in breast DCE-MRI’. Image Analysis and Processing (ICIAP), 2013, pp. 359368.
    11. 11)
      • 11. Abdolmaleki, P., Buadu, L.D., Naderimansh, H.: ‘Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network’, Cancer Lett., 2001, 171, pp. 183191.
    12. 12)
      • 12. Agner, S.C., Xu, J., Fatakdawala, H., et al: ‘Segmentation and classification of triple negative breast cancers using DCE-MRI’. 2009 IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, 2009, pp. 12271230.
    13. 13)
      • 13. Agner, S.C., Soman, S., Libfeld, E., et al: ‘Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification’, J. Digit. Imaging, 2011, 24, pp. 446463.
    14. 14)
      • 14. Antropova, N., Huynh, B., Giger, M.: ‘SU-D-207B-06: predicting breast cancer malignancy on DCE-MRI data using pre-trained convolutional neural networks’, Med. Phys., 2016, 43, pp. 33493350.
    15. 15)
      • 15. Arbach, L., Stolpen, A., Reinhardt, J.: ‘Classification of breast MRI lesions using a backpropagation neural network (BNN)’. 2004 2nd IEEE Int. Symp. on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821), 2004, vol. 2, pp. 253256.
    16. 16)
      • 16. Bhooshan, N., Giger, M.L., Jansen, S.A., et al: ‘Cancerous breast lesions on dynamic contrast-enhanced MR images’, Breast Imag., 2010, 254, pp. 680690.
    17. 17)
      • 17. Cai, H., Peng, Y., Ou, C., et al: ‘Diagnosis of breast masses from dynamic contrast-enhanced and diffusion-weighted MR: a machine learning approach’, PLoS ONE, 2014, 9, p. e87387.
    18. 18)
      • 18. Chaudhury, B., Zhou, M., Goldgof, D.B., et al: ‘Identifying metastatic breast tumors using textural kinetic features of a contrast based habitat in DCE-MRI’. Medical Imaging 2015: Computer-Aided Diagnosis, vol. 9414, p. 941415.
    19. 19)
      • 19. Chen, W., Giger, M.L., Bick, U., et al: ‘Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI’, Med. Phys., 2006, 33, pp. 28782887.
    20. 20)
      • 20. Dalmış, M.U., Gubern-Mérida, A., Vreemann, S., et al: ‘A computer-aided diagnosis system for breast DCE-MRI at high spatiotemporal resolution’, Med. Phys., 2016, 43, pp. 8494.
    21. 21)
      • 21. Ertaş, G., Gülçür, H.Ö., Osman, O., et al: ‘Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching’, Comput. Biol. Med., 2008, 38, pp. 116126.
    22. 22)
      • 22. Eyal, E., Badikhi, D., Furman-Haran, E., et al: ‘Principal component analysis of breast DCE-MRI adjusted with a model-based method’, J. Magn. Reson. Imag., 2009, 30, pp. 989998.
    23. 23)
      • 23. Fusco, R., Sansone, M., Petrillo, A., et al: ‘A multiple classifier system for classification of breast lesions using dynamic and morphological features in DCE-MRI’. Joint IAPR Int. Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), 2012, pp. 684692.
    24. 24)
      • 24. Glaßer, S., Niemann, U., Preim, B., et al: ‘Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor's most suspect region only?’. Proc. CBMS 2013 – 26th IEEE Int. Symp. on Computer-Based Medical Systems, 2013, pp. 7782.
    25. 25)
      • 25. Gubern-Mérida, A., Martí, R., Melendez, J., et al: ‘Automated localization of breast cancer in DCE-MRI’, Med. Image Anal., 2015, 20, pp. 265274.
    26. 26)
      • 26. Hassanien, A.E., Kim, T.-H., Hassanien, A.E., et al: ‘Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks’, J. Appl. Logic, 2012, 10, pp. 277284.
    27. 27)
      • 27. Honda, E., Nakayama, R., Koyama, H., et al: ‘Computer-aided diagnosis scheme for distinguishing between benign and malignant masses in breast DCE-MRI’, J. Digit. Imag., 2016, 29, pp. 388393.
    28. 28)
      • 28. Jayender, J., Chikarmane, S., Jolesz, F.A., et al: ‘Automatic segmentation of invasive breast carcinomas from dynamic contrast-enhanced MRI using time series analysis’, J. Magn. Reson. Imag., 2014, 40, pp. 467475.
    29. 29)
      • 29. Juntu, J., Sijbers, J., De Backer, S., et al: ‘Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images’, J. Magn. Reson. Imag., 2010, 31, pp. 680689.
    30. 30)
      • 30. Kannan, S., Ramathilagam, S., Devi, R., et al: ‘Robust kernel FCM in segmentation of breast medical images’, Expert Syst. Appl., 2011, 38, pp. 43824389.
    31. 31)
      • 31. Lee, S.H., Kim, J.H., Park, J.S., et al: ‘Computerized segmentation and classification of breast lesions using perfusion volume fractions in dynamic contrast-enhanced MRI’. 2008 Int. Conf. on BioMedical Engineering and Informatics, 2008, pp. 5862.
    32. 32)
      • 32. Lee, S.H., Kim, J.H., Park, J.S., et al: ‘Characterizing time-intensity curves for spectral morphometric analysis of intratumoral enhancement patterns in breast DCE-MRI: comparison between differentiation performance of temporal model parameters based on DFT AND SVD’. Proc. – 2009 IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, ISBI 2009, 2009, pp. 6568.
    33. 33)
      • 33. Lee, S.H., Kim, J.H., Cho, N., et al: ‘Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI’, Med. Phys., 2010, 37, pp. 39403956.
    34. 34)
      • 34. Leinsinger, G., Schlossbauer, T., Scherr, M., et al: ‘Cluster analysis of signal-intensity time course in dynamic breast MRI: does unsupervised vector quantization help to evaluate small mammographic lesions?’, Eur. Radiol., 2006, 16, pp. 11381146.
    35. 35)
      • 35. Levman, J., Martel, A.L.: ‘Computer-aided diagnosis of breast cancer from magnetic resonance imaging examinations by custom radial basis function vector machine’. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society, 2010, pp. 55775580.
    36. 36)
      • 36. Lucht, R., Delorme, S., Brix, G.: ‘Neural network-based segmentation of dynamic MR mammographic images’, Magn. Reson. Imag., 2002, 20, pp. 147154.
    37. 37)
      • 37. Mayerhoefer, M.E., Breitenseher, M., Amann, G., et al: ‘Are signal intensity and homogeneity useful parameters for distinguishing between benign and malignant soft tissue masses on MR images? Objective evaluation by means of texture analysis’, Magn. Reson. Imag., 2008, 26, pp. 13161322.
    38. 38)
      • 38. McClymont, D., Mehnert, A., Trakic, A., et al: ‘Fully automatic lesion segmentation in breast MRI using mean-shift and graph-cuts on a region adjacency graph’, J. Magn. Reson. Imag., 2014, 39, pp. 795804.
    39. 39)
      • 39. McLaren, C.E., Chen, W.-P., Nie, K., et al: ‘Prediction of malignant breast lesions from MRI features. A comparison of artificial neural network and logistic regression techniques’, Acad. Radiol., 2009, 16, pp. 842851.
    40. 40)
      • 40. Meeuwis, C., van de Ven, S.M., Stapper, G., et al: ‘Computer-aided detection (CAD) for breast MRI: evaluation of efficacy at 3.0 T’, Eur. Radiol., 2010, 20, pp. 522528.
    41. 41)
      • 41. Meinel, L.A., Stolpen, A.H., Berbaum, K.S., et al: ‘Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system’, J. Magn. Reson. Imag., 2007, 25, pp. 8995.
    42. 42)
      • 42. Moftah, H.M., Azar, A.T., Al-Shammari, E.T., et al: ‘Adaptive k-means clustering algorithm for MR breast image segmentation’, Neural Comput. Appl., 2014, 24, pp. 19171928.
    43. 43)
      • 43. Nagarajan, M.B., Huber, M.B., Schlossbauer, T., et al: ‘Classification of small lesions in dynamic breast MRI: eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement over time’, Mach. Vis. Appl., 2013, 24, pp. 895901.
    44. 44)
      • 44. Nagarajan, M.B., Huber, M.B., Schlossbauer, T., et al: ‘Classification of small lesions in breast MRI: evaluating the role of dynamically extracted texture features through feature selection’, J. Med. Biol. Eng., 2013, 33, p. 59.
    45. 45)
      • 45. Navaei-Lavasani, S., Fathi-Kazerooni, A., Saligheh-Rad, H., et al: ‘Discrimination of benign and malignant suspicious breast tumors based on semi-quantitative DCE-MRI parameters employing support vector machine’, Front. Biomed. Technol., 2015, 2, pp. 8792.
    46. 46)
      • 46. Newell, D., Nie, K., Chen, J.H., et al: ‘Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement’, Eur. Radiol., 2010, 20, pp. 771781.
    47. 47)
      • 47. Sathya, D., Geetha, K.: ‘Mass classification in breast DCE-MR images using an artificial neural network trained via a bee colony optimization algorithm’, ScienceAsia, 2013, 39, p. 294.
    48. 48)
      • 48. Sathya, J., Geetha, K.: ‘Experimental investigation of classification algorithms for predicting lesion type on breast DCE-MR images’, Int. J. Comput. Appl., 2013, 82, pp. 18.
    49. 49)
      • 49. Szabó, B.K., Aspelin, P., Wiberg, M.K.: ‘Neural network approach to the segmentation and classification of dynamic magnetic resonance images of the breast: comparison with empiric and quantitative kinetic parameters’, Acad. Radiol., 2004, 11, pp. 13441354.
    50. 50)
      • 50. Tanner, C., Hawkes, D.J.D., Khazen, M., et al: ‘Does registration improve the performance of a computer aided diagnosis system for dynamic contrast-enhanced MR mammography?’. Third IEEE Int. Symp. on Biomedical Imaging: Nano to Macro, vol. d, pp. 466469.
    51. 51)
      • 51. Twellmann, T., ter Haar Romeny, B.: ‘Computer-aided classification of lesions by means of their kinetic signatures in dynamic contrast-enhanced MR images’, Proc. SPIE, 2008, 6915, pp. 69150J69150J–9.
    52. 52)
      • 52. Tzacheva, A.A., Najarian, K., Brockway, J.P.: ‘Breast cancer detection in gadolinium-enhanced MR images by static region descriptors and neural networks’, J. Magn. Reson. Imag., 2003, 17, pp. 337342.
    53. 53)
      • 53. Tzalavra, A., Dalakleidi, K., Zacharaki, E.I., et al: ‘Comparison of multi-resolution analysis patterns for texture classification of breast tumors based on DCE-MRI’. Machine Learning in Medical Imaging, 2016, pp. 296304.
    54. 54)
      • 54. Vergnaghi, D., Monti, A., Setti, E., et al: ‘A use of a neural network to evaluate contrast enhancement curves in breast magnetic resonance images’, J. Digit. Imag., 2001, 14, pp. 5859.
    55. 55)
      • 55. Vignati, A., Giannini, V., Bert, A., et al: ‘A fully automatic lesion detection method for DCE-MRI fat-suppressed breast images’, SPIE Med. Imag., 2009, 7260, pp. 726026726026–12.
    56. 56)
      • 56. Vignati, A., Giannini, V., De Luca, M., et al: ‘Performance of a fully automatic lesion detection system for breast DCE-MRI’, J. Magn. Reson. Imag., 2011, 34, pp. 13411351.
    57. 57)
      • 57. Vomweg, T.W., Buscema, M., Kauczor, H.U., et al: ‘Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR mammography’, Med. Phys., 2003, 30, pp. 23502359.
    58. 58)
      • 58. Wang, Y., Morrell, G., Heibrun, M.E., et al: ‘3D multi-parametric breast MRI segmentation using hierarchical support vector machine with coil sensitivity correction’, Acad. Radiol., 2013, 20, pp. 137147.
    59. 59)
      • 59. Wang, T.C., Huang, Y.H., Huang, C.S., et al: ‘Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis’, Magn. Reson. Imag., 2014, 32, pp. 197205.
    60. 60)
      • 60. Waugh, S., Purdie, C., Jordan, L., et al: ‘Magnetic resonance imaging texture analysis classification of primary breast cancer’, Eur. Radiol., 2016, 26, pp. 322330.
    61. 61)
      • 61. Woods, B.J., Clymer, B.D., Kurc, T., et al: ‘Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data’, J. Magn. Reson. Imag., 2007, 25, pp. 495501.
    62. 62)
      • 62. Wu, S., Weinstein, S.P., Conant, E.F., et al: ‘Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images’, Med. Phys., 2013, 40, p. 042301 112.
    63. 63)
      • 63. Xiaohua, C., Brady, M., Lo, J.J., et al: ‘Simultaneous segmentation and registration of contrast-enhanced breast MRI’. Information Processing in Medical Imaging, 2005, pp. 3159.
    64. 64)
      • 64. Yang, Q., Li, L., Zhang, J., et al: ‘Computer-aided diagnosis of breast DCE-MRI images using bilateral asymmetry of contrast enhancement between two breasts’, J. Digit. Imag., 2014, 27, pp. 152160.
    65. 65)
      • 65. Yang, Q., Li, L., Zhang, J., et al: ‘A new quantitative image analysis method for improving breast cancer diagnosis using DCE-MRI examinations’, Med. Phys., 2015, 42, pp. 103109.
    66. 66)
      • 66. Zheng, Y., Englander, S., Baloch, S., et al: ‘STEP: spatiotemporal enhancement pattern for MR-based breast tumor diagnosis’, Med. Phys., 2009, 36, p. 3192.
    67. 67)
      • 67. Tanner, C.: ‘Registration and lesion classification of contrast-enhanced magnetic resonance breast images’. PhD. thesis, 2005.
    68. 68)
      • 68. Hill, A., Mehnert, A., Crozier, S., et al: ‘Dynamic breast MRI: image registration and its impact on enhancement curve estimation’. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society, 2006, vol. 1, pp. 30493052.
    69. 69)
      • 69. Hill, A., Mehnert, A., Crozier, S., et al: ‘Evaluating the accuracy and impact of registration in dynamic contrast-enhanced breast MRI’, Concepts Magn. Reson. B, Magn. Reson. Eng., 2009, 35, pp. 106120.
    70. 70)
      • 70. Hill, D.L., Batchelor, P.G., Holden, M., et al: ‘Medical image registration’, Phys. Med. Biol., 2001, 46, pp. R1R45.
    71. 71)
      • 71. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’, in Pereira, F., Burges, C.J.C., Bottou, L., et al (Eds.): ‘Advances in neural information processing systems 25’ (Curran Associates, Inc., Red Hook, NY, USA, 2012), pp. 10971105.
    72. 72)
      • 72. Krois, W., Romar, A.K., Wild, T., et al: ‘Objective breast symmetry analysis with the breast analyzing tool (bat): improved tool for clinical trials’, Breast Cancer Res. Treat., 2017, 164, pp. 421427.
    73. 73)
      • 73. Gallo, G., Allegra, D., Atani, Y.G., et al: ‘Breast shape parametrization through planar projections’. Int. Conf. on Advanced Concepts for Intelligent Vision Systems, 2016, pp. 135146.
    74. 74)
      • 74. Rosado-Toro, J.A., Barr, T., Galons, J.-P., et al: ‘Automated breast segmentation of fat and water MR images using dynamic programming’, Acad. Radiol., 2015, 22, pp. 139148.
    75. 75)
      • 75. Alshanbari, H., Amain, S., Shuttelworth, J., et al: ‘Automatic segmentation in breast cancer using watershed algorithm’, Int. J. Biomed. Eng. Sci., 2015, 2, pp. 16.
    76. 76)
      • 76. Wang, L., Filippatos, K., Friman, O., et al: ‘Fully automated segmentation of the pectoralis muscle boundary in breast MR images’, SPIE Med. Imag., 7963, 2011, p. 796309796309–8.
    77. 77)
      • 77. Wang, L., Platel, B., Ivanovskaya, T., et al: ‘Fully automatic breast segmentation in 3D breast MRI’. 2012 9th IEEE Int. Symp. on Biomedical Imaging (ISBI), 2012, pp. 10241027.
    78. 78)
      • 78. Fooladivanda, A., Shokouhi, S.B., Mosavi, M.R., et al: ‘Atlas-based automatic breast MRI segmentation using pectoral muscle and chest region model’. 2014 21st Iranian Conf. on Biomedical Engineering (ICBME), 2014, pp. 258262.
    79. 79)
      • 79. Gubern-Merida, A., Kallenberg, M., Mann, R.M., et al: ‘Breast segmentation and density estimation in breast MRI: a fully automatic framework’, IEEE. J. Biomed. Health Inf., 2015, 19, pp. 349357.
    80. 80)
      • 80. Ortiz, C.G., Martel, A.L.: ‘Automatic atlas-based segmentation of the breast in MRI for 3D breast volume computation’, Med. Phys., 2012, 39, p. 5835.
    81. 81)
      • 81. Giannini, V., Vignati, A., Morra, L., et al: ‘A fully automatic algorithm for segmentation of the breasts in DCE-MR images’. 2010 Annual Int. Conf. of the IEEE Engineering in Medicine and Biology, 2010, pp. 31463149.
    82. 82)
      • 82. Hayton, P., Brady, M., Tarassenko, L., et al: ‘Analysis of dynamic MR breast images using a model of contrast enhancement’, Med. Image Anal., 1997, 1, pp. 207224.
    83. 83)
      • 83. Lin, M., Chen, J.-H., Wang, X., et al: ‘Template-based automatic breast segmentation on MRI by excluding the chest region’, Med. Phys., 2013, 40, p. 122301.
    84. 84)
      • 84. Lu, W., Yao, J., Lu, C., et al: ‘DCE-MRI segmentation and motion correction based on active contour model and forward mapping’. Seventh ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD'06), 2006, pp. 208212.
    85. 85)
      • 85. Mustra, M., Bozek, J., Grgic, M.: ‘Breast border extraction and pectoral muscle detection using wavelet decomposition’. IEEE EUROCON 2009, 2009, pp. 14261433.
    86. 86)
      • 86. Marrone, S., Piantadosi, G., Fusco, R., et al: ‘Breast segmentation using fuzzy C-means and anatomical priors in DCE-MRI’. 23rd Int. Conf. on Pattern Recognition.
    87. 87)
      • 87. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, pp. 6266.
    88. 88)
      • 88. Rueckert, D., Sonoda, L.I., Hayes, C., et al: ‘Nonrigid registration using free-form deformations: application to breast MR images’, IEEE Trans. Med. Imag., 1999, 18, pp. 712721.
    89. 89)
      • 89. Klein, S., Staring, M., Murphy, K., et al: ‘Elastix: a toolbox for intensity-based medical image registration’, IEEE Trans. Med. Imag., 2010, 29, pp. 196205.
    90. 90)
      • 90. Piantadosi, G., Marrone, S., Fusco, R., et al: ‘Data-driven selection of motion correction techniques in breast DCE-MRI’. Proc. 2015 IEEE Int. Symp. on Medical Measurements and Applications (MeMeA), Torino, Italy, 2015, pp. 273278.
    91. 91)
      • 91. Marrone, S., Piantadosi, G., Fusco, R., et al: ‘A novel model-based measure for quality evaluation of image registration techniques in DCE-MRI’. 2014 IEEE 27th Int. Symp. on Computer-Based Medical Systems, 2014, pp. 209214.
    92. 92)
      • 92. Marrone, S., Piantadosi, G., Sansone, M., et al: ‘Look-up tables for efficient non-linear parameters estimation’. Int. Conf. on Optimization and Decision Science, pp. 4957.
    93. 93)
      • 93. Kuhl, C.K., Mielcareck, P., Klaschik, S., et al: ‘Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?’, Radiology, 1999, 211, pp. 101110.
    94. 94)
      • 94. Piantadosi, G., Fusco, R., Petrillo, A., et al: ‘LBP-TOP for volume lesion classification in breast DCE-MRI’. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9279, pp. 647657.
    95. 95)
      • 95. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, pp. 971987.
    96. 96)
      • 96. Ahonen, T., Hadid, A., Pietikäinen, M.: ‘Face description with local binary patterns: application to face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, pp. 20372041.
    97. 97)
      • 97. Zhao, G., Pietikäinen, M.: ‘Dynamic texture recognition using local binary patterns with an application to facial expressions’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, pp. 915928.
    98. 98)
      • 98. Dice, L.R.: ‘Measures of the amount of ecologic association between species’, Ecology, 1945, 26, pp. 297302.
    99. 99)
      • 99. Marrone, S., Piantadosi, G., Fusco, R., et al: ‘An investigation of deep learning for lesions malignancy classification in breast DCE-MRI’. Int. Conf. on Image Analysis and Processing, pp. 479489.
    100. 100)
      • 100. Deng, J., Dong, W., Socher, R., et al: ‘Imagenet: A large-scale hierarchical image database’. IEEE Conf. on Computer Vision and Pattern Recognition. CVPR 2009, 2009, pp. 248255.
    101. 101)
      • 101. Assael, Y.M., Shillingford, B., Whiteson, S., et al: ‘Lipnet: end-to-end sentence-level lip reading’, 2016.
    102. 102)
      • 102. Dvořák, P., Menze, B.: ‘Local structure prediction with convolutional neural networks for multimodal brain tumor segmentation’, 2016, pp. 5971.
    103. 103)
      • 103. Havaei, M., Dutil, F., Pal, C., et al: ‘A convolutional neural network approach to brain tumor segmentation’, 2016, pp. 195208.
    104. 104)
      • 104. Nie, D., Wang, L., Gao, Y., et al: ‘Fully convolutional networks for multimodality isointense infant brain image segmentation’. 2016 IEEE 13th Int. Symp. on Biomedical Imaging (ISBI), 2016, vol. 8, pp. 13421345.
    105. 105)
      • 105. Pereira, S., Pinto, A., Alves, V., et al: ‘Brain tumor segmentation using convolutional neural networks in MRI images’, IEEE Trans. Med. Imag., 2016, 35, pp. 12401251.
    106. 106)
      • 106. Wang, Y., Sun, Z., Liu, C., et al: ‘MRI image segmentation by fully convolutional networks’. 2016 IEEE Int. Conf. on Mechatronics and Automation, 2016, pp. 16971702.
    107. 107)
      • 107. Reda, I., Shalaby, A., El-Ghar, M.A., et al: ‘A new NMF-autoencoder based CAD system for early diagnosis of prostate cancer’. Proc. Int. Symp. on Biomedical Imaging, June 2016, pp. 12371240.
    108. 108)
      • 108. Catanuto, G., Taher, W., Rocco, N., et al: ‘Breast shape analysis with curvature estimates and principal component analysis for cosmetic and reconstructive breast surgery’, Aesthetic Surg. J., 2018.
    109. 109)
      • 109. Bruno, D.O.T., do Nascimento, M.Z., Ramos, R.P., et al: ‘LBP operators on curvelet coefficients as an algorithm to describe texture in breast cancer tissues’, Expert Syst. Appl., 2016, 55, pp. 329340.

Related content

This is a required field
Please enter a valid email address