Automated approach for indirect immunofluorescence images classification based on unsupervised clustering method

Automated approach for indirect immunofluorescence images classification based on unsupervised clustering method

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Autoimmune diseases (ADs) are a collection of many complex disorders of unknown aetiology resulting in immune responses to self-antigens and are thought to result from interactions between genetic and environmental factors. ADs collectively are amongst the most prevalent diseases in the U.S., affecting at least 7% of the population. The diagnosis of ADs is very complex, the standard screening methods provides seeking and recognizing of Antinuclear Antibodies (ANA) by Indirect ImmunoFluorescence (IIF) based on HEp-2 cells. In this paper an automatic system able to identify and classify the Centromere pattern is presented. The method is based on the grouping of centromeres present on the cells through a clustering K-means algorithm. The performances were obtained on two public database of IIF images (A.I.D.A. and MIVIA). Our results showed a sensitivity for image of (90 ± 5)% and a Accuracy equal to (98.0 ± 0.5)%. Results demonstrate that the system is able to identify and classify Centromere pattern with accuracy better or comparable with some representative state of the art works. Moreover, it should be noted that for the classification phase the works used for the comparison used an expert-manual segmentation while, in the present work, the segmentation was obtained automatically.


    1. 1)
      • 1. NCCLSI/LA2-A.: ‘Quality assurance for the indirect immunofluorescence test for autoantibodies to nuclear antigen (IF-ANA): Approved guideline’, Waine, PA, 1996, 16, (11).
    2. 2)
      • 2. Tozzoli, R., Antico, A., Porcelli, B., et al: ‘automation in indirect immunofluorescence testing: a new step in the evolution of the autoimmunology laboratory’, Autoimmun. Highlights, 2012, 3, pp. 5965.
    3. 3)
      • 3. Ho, D.J., Fu, C., Salama, P., et al: ‘Nuclei detection and segmentation of fluorescence microscopy images using three dimensional convolutional neural networks’. Int. Symp. Biomedical Imaging, Washington, DC, USA, 2018, pp. 418422.
    4. 4)
      • 4. Kayasandik, C., Negi, P., Laezza, F., et al: ‘Automated sorting of neuronal trees in fluorescent images of neuronal networks using NeuroTreeTracer’, Sci. Rep., 2018, 8, (1), pp. 112.
    5. 5)
      • 5. Ratti, C., Botti, L., Cancila, V., et al: ‘Trabectedin overrides osteosarcoma differentiative block and reprograms the tumor immune environment enabling effective combination with immune checkpoint inhibitors’, Clin. Cancer Res., 2017, 23, (17), pp. 51495161.
    6. 6)
      • 6. Song, T.-H., Sanchez, V., Eldaly, H., et al: ‘Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images’, IEEE Trans. Biomed. Eng., 2017, 64, (12), pp. 29132923.
    7. 7)
      • 7. Zhou, Y., Chang, H., Barner, K.E., et al: ‘Nuclei segmentation via sparsity constrained convolutional regression’. Int. Symp. Biomedical Imaging, New York, NY, USA, 2015, pp. 12841287.
    8. 8)
      • 8. Soda, P., Iannello, G., Vento, M.: ‘A multiple expert system for classifying fluorescent intensity in antinuclear autoantibodies analysis’, Pattern Anal. Appl., 2009, 12, pp. 215226.
    9. 9)
      • 9. Soda, P., Iannello, G.: ‘Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis’, IEEE Trans. Inf. Technol. Biomed., 2009, 13, pp. 322329.
    10. 10)
      • 10. Iannello, G., Onofri, L., Soda, P.: ‘A bag of visual words approach for centromere and cytoplasmic staining pattern classification on HEp-2 images’, 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rome, Italy, 2012, vol. 1, pp. 16.
    11. 11)
      • 11. Cascio, D., Taormina, V., Cipolla, M., et al: ‘HEp-2 cell classification with heterogeneous classes-processes based on K-nearest neighbours’, Pattern Recog. Tech. Indirect Immunofluorescence Images, 2014, I3A, (1), pp. 1015.
    12. 12)
      • 12. Cascio, D., Taormina, V., Cipolla, M., et al: ‘A multi-process system for HEp-2 cells classification based on SVM’, Pattern Recognit. Lett., 2016, 82, pp. 5663.
    13. 13)
      • 13. Rigon, A., Buzzulini, F., Soda, P., et al: ‘Novel opportunities in automated classification of antinuclear antibodies in HEp-2 cells’, Autoimmun. Rev., 2011, 10, pp. 647652.
    14. 14)
      • 14. Bossuyt, X., Cooreman, S., De Baere, H., et al: ‘Detection of antinuclear antibodies by automated indirect immunofluorescence analysis’, Clin. Chim. Acta, 2013, 415, pp. 101106.
    15. 15)
      • 15. Elbischger, P., Geerts, S., Sander, K., et al: ‘Algorithmic framework for HEp-2 fluorescence pattern classification to aid auto-immune diseases diagnosis’. IEEE Int. Symp. Biomedical Imaging, 2009, vol. 1, pp. 562565.
    16. 16)
      • 16. Foggia, P., Percannella, G., Soda, P., et al: ‘Early experiences in mitotic cells recognition on HEp-2 slides’. IEEE Symp. Computer-Based Medical Systems, 2010, vol. 1, pp. 3843.
    17. 17)
      • 17. Ersoy, I., Bunyak, F., Peng, J., et al: ‘HEp-2 cell classification in IIF images using ShareBoost’. Int. Conf. Pattern Recognition, Tsukuba, Japan, 2012, vol. 1, pp. 33623365.
    18. 18)
      • 18. Li, K., Kong, X., Cao, J., et al: ‘HEp-2 cell pattern classification with discriminative dictionary learning’, Pattern Recognit., 2014, 47, pp. 23792388.
    19. 19)
      • 19. Theodorakopoulos, I., Kastaniotis, D., Economou, G., et al: ‘HEp-2 cell classification using descriptors fused into the dissimilarity space into the dissimilarity space’, Int. J. Artif. Intell., 2014, 23, pp. 12461254.
    20. 20)
      • 20. Di Cataldo, S., Bottino, A., Ul Islam, I., et al: ‘Subclass discriminant analysis of morphological and textural features for HEp-2 staining pattern classification’, Pattern Recognit., 2014, 47, pp. 23892399.
    21. 21)
      • 21. Bizzaro, N., Antico, A., Platzgummer, S., et al: ‘Automated antinuclear immunofluorescence antibody screening: a comparative study of six computer-aided diagnostic systems’, Autoimmun. Rev., 2014, 13, pp. 92298.
    22. 22)
      • 22. Ciatto, S., Cascio, D., Fauci, F., et al: ‘Computer assisted diagnosis (CAD) in mammography. Comparison of diagnostic accuracy of a new algorithm (cyclopus, medicad) with two commercial systems’, Radiol. Med., 2009, 114, pp. 626635.
    23. 23)
      • 23. Cascio, D., Fauci, F., Iacomi, M., et al: ‘Computer-aided diagnosis in digital mammography: comparison of two commercial systems’, Imaging. Med., 2014, 6, pp. 1330.
    24. 24)
      • 24. Frandsen, P.B., Calcott, B., Mayer, C., et al: ‘Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates’, BMC Evol. Biol., 2015, 15, (1), p. 13.
    25. 25)
      • 25. Vivona, L., Cascio, D., Bruno, S., et al: ‘Unsupervised clustering method for pattern recognition in IIF images’. 2nd Int. Image Processing, Applications and Systems Conf., IPAS, Hammamet, Tunisia, 2017.
    26. 26)
      • 26. Vivona, L., Cascio, D., Magro, R., et al: ‘A fuzzy logic C-means clustering algorithm to enhance microcalcifications clusters in digital mammograms’. Nuclear Science Symp. and Medical Imaging Conf., Valencia, Spain, 2011, vol. 1, pp. 30483050.
    27. 27)
      • 27. Fauci, F., La Manna, A., Cascio, D., et al: ‘A Fourier-based algorithm for micro-calcification enhancement in mammographic images’. IEEE Nuclear Science Symp., Dresden, Germany, 2008, vol. 1, pp. 43884391.
    28. 28)
      • 28. Masala, G.L., Tangaro, S., Golosio, B., et al: ‘Comparative study of feature classification methods for mass lesion recognition in digitized mammograms’, Nuovo. Cimento. C, 2007, 30, pp. 305316.
    29. 29)
      • 29. Iacomi, M., Cascio, D., Fauci, F., et al: ‘Mammographic images segmentation based on chaotic map clustering algorithm’, BMC Med. Imaging, 2014, 14, pp. 111.
    30. 30)
      • 30. Tangaro, S., Bellotti, R., De Carlo, F., et al: ‘Magic-5: an Italian mammographic database for research’, Radiol. Med., 2008, 113, pp. 477485.
    31. 31)
      • 31. Benammar Elgaaied, A., Cascio, D., Bruno, S., et al: ‘Computer-assisted classification patterns in autoimmune diagnostics: the AIDA project’, BioMed Res. Int., 2016, 1, pp. 19.
    32. 32)
      • 32. Foggia, P., Percannella, G., Soda, P., et al: ‘Report of the First International Contest on HEp-2 Cells Classification’,, hosted by the 21th ICPR 2012.

Related content

This is a required field
Please enter a valid email address