http://iet.metastore.ingenta.com
1887

Enhancement approach for liver lesion diagnosis using unenhanced CT images

Enhancement approach for liver lesion diagnosis using unenhanced CT images

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Hepatocellular carcinoma, the primary liver cancer and other liver-related pathologies are diagnosed with the help of contrast enhanced computed tomography (CECT) images. The CECT imaging technology is claimed to be an invasive technique, as the intravenous contrast agent injected prior to computed tomography (CT) acquisition is harmful and is not advised for patients with pre-existing diabetes and kidney disorders. This study presents a novel enhancement technique for the diagnosis of liver lesions from unenhanced CT images by means of fuzzy histogram equalisation in the non-sub-sampled contourlet transform domain followed by decorrelation stretching. The enhanced images obtained in this study substantiate that the proposed method improves the diagnostic value from the unenhanced CT images thereby providing an alternate painless solution for CT acquisition for the subset of patients mentioned above. Another major highlight of this work is the characterisation of lesions from the enhanced output for five different classes of pathology. The obtained results presented in this study demonstrate the potency of the proposed enhancement technique in achieving an appreciable performance in lesion characterisation. The images used for this research study have been obtained from Jawaharlal Institute of Medical Education and Research Puducherry, India.

References

    1. 1)
      • 1. Beal, E.W, Tumin, D., Kabir, A., et al: ‘Trends in the mortality of hepatocellular carcinoma in the United States’, J. Gastrointest. Surg., 2017, 27, (9), pp. 14851491.
    2. 2)
      • 2. Pandharipande, P.V., Krinsky, G.A., Rusinek, H., et al: ‘Perfusion imaging of the liver: current challenges and future goals’, Radiology, 2005, 234, (3), pp. 661673.
    3. 3)
      • 3. Baron, R.L.: ‘Understanding and optimizing use of contrast material for CT of the liver’, Am. J. Roentgenol., 1994, 163, (2), pp. 323331.
    4. 4)
      • 4. Roy, S., Chi, Y., Liu, J., et al: ‘Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions’, IEEE Trans. Biomed. Eng., 2014, 61, (11), pp. 27682778.
    5. 5)
      • 5. Aoki, B.B., Fram, D., Taminato, M., et al: ‘Acute kidney injury after contrast-enhanced examination among elderly’, Rev. Latino Am. Enferm., 2014, 22, (4), pp. 637644.
    6. 6)
      • 6. Hinson, J.S.., Ehmann, M.R.., Fine, D.M.., et al: ‘Risk of acute kidney injury after intravenous contrast media administration’, Ann. Emerg. Med., 2017, 69, pp. 577586.
    7. 7)
      • 7. Baerlocher, M.O.., Asch, M., Myers, A.: ‘Metformin and intravenous contrast’, Can. Med. Assoc. J., 2013, 185, (1), p. E78.
    8. 8)
      • 8. Uhl, W., Roggo, A., Kirschstein, T., et al: ‘Influence of contrast-enhanced computed tomography on course and outcome in patients with acute pancreatitis’, Pancreas, 2002, 24, pp. 191197.
    9. 9)
      • 9. Kim, Y.-T.: ‘Contrast enhancement using brightness preserving bi-histogram equalization’, IEEE Trans. Consumer Electron., 1997, 43, (1), pp. 18.
    10. 10)
      • 10. Wang, Y., Chen, Q., Zhang, B.: ‘Image enhancement based on equal area dualistic sub-image histogram equalization method’, IEEE Trans. Consumer Electron., 1999, 45, (1), pp. 6875.
    11. 11)
      • 11. Chen, S.-D., Ramli, A.R.: ‘Minimum mean brightness error bi-histogram equalization in contrast enhancement’, IEEE Trans. Consumer Electron., 2003, 49, (4), pp. 13101319.
    12. 12)
      • 12. Soong-Der, C., Ramli, A.R.: ‘Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation’, IEEE Trans. Consumer Electron., 2003, 49, pp. 13011309.
    13. 13)
      • 13. Sim, K.S., Tso, C.P., Tan, Y.: ‘Recursive sub-image histogram equalization applied to gray scale images’, Pattern Recogn. Lett., 2007, 28, pp. 12091221.
    14. 14)
      • 14. Singh, K., Kapoor, R.: ‘Image enhancement using exposure based sub image histogram equalization’, Pattern Recogn. Lett., 2014, 36, pp. 1014.
    15. 15)
      • 15. Singh, K., Kapoor, R., Kr Sinha, S.: ‘Enhancement of low exposure images via recursive histogram equalization algorithms’, Optik, 2015, 126, pp. 26192625.
    16. 16)
      • 16. Wang, Q., Ward, R.K.: ‘Fast image/video contrast enhancement based on weighted thresholded histogram equalization’, IEEE Trans. Consumer Electron., 2007, 53, (2), pp. 757764.
    17. 17)
      • 17. Kim, M., Chung, M.G.: ‘Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement’, IEEE Trans. Consumer Electron., 2008, 54, (3), pp. 13891397.
    18. 18)
      • 18. Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M.A.A., et al: ‘A dynamic histogram equalization for image contrast enhancement’, IEEE Trans. Consumer Electron., 2007, 53, pp. 593600.
    19. 19)
      • 19. Ibrahim, H., Kong, N.S.P.: ‘Brightness preserving dynamic histogram equalization for image contrast enhancement’, IEEE Trans. Consumer Electron., 2007, 53, pp. 17521758.
    20. 20)
      • 20. Sheet, D., Garud, H., Suveer, A., et al: ‘Brightness preserving dynamic fuzzy histogram equalization’, IEEE Trans. Consumer Electron., 2010, 56, (4), pp. 24752480.
    21. 21)
      • 21. Singh, K., Kapoor, R.: ‘Image enhancement via median-mean based sub-image clipped histogram equalization’, Optik, 2014, 125, pp. 46464651.
    22. 22)
      • 22. Poddar, S., Tewary, S., Sharma, D., et al: ‘Non-parametric modified histogram equalisation for contrast enhancement’, IET Image Process., 2013, 7, (7), pp. 641652.
    23. 23)
      • 23. Parihar, A.S., Verma, O.P.: ‘Contrast enhancement using entropy-based dynamic sub-histogram equalisation’, IET Image Process., 2016, 10, (11), pp. 799808.
    24. 24)
      • 24. Yang, L., Liang, Y., Fan, H.: ‘Study on the methods of image enhancement for liver CT images’, Optik, 2010, 121, pp. 17521755.
    25. 25)
      • 25. Isa, S.I., Siti, N.S., Muzaimi, M., et al: ‘Automatic contrast enhancement of brain MR images using average intensity replacement based on adaptive histogram equalization (AIR-AHE)’, Biocybern Biomed. Eng., 2017, 37, (1), pp. 2434.
    26. 26)
      • 26. Anand, S., Gayathri, S.: ‘Mammogram image enhancement by two-stage adaptive histogram equalization’, Optik, 2015, 126, (21), pp. 31503152.
    27. 27)
      • 27. Huang, Y.-L., Chen, J.-H., Shen, W.-C.: ‘Diagnosis of hepatic tumors with texture analysis in nonenhanced computed tomography images’, Acad. Radiol., 2006, 13, (6), pp. 713720.
    28. 28)
      • 28. Chen, E.-L., Chung, P.-C., Chen, C.-L., et al: ‘An automatic diagnostic system for CT liver image classification’, IEEE Trans. Biomed. Eng., 1998, 45, (6), pp. 783794.
    29. 29)
      • 29. Gletsos, M., Mougiakakou, S.G., Matsopoulos, G.K., et al: ‘A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier’, IEEE Trans. Inf. Technol. Biomed., 2003, 7, (3), pp. 153162.
    30. 30)
      • 30. Bilello, M., Gokturk, S.B., Desser, T., et al: ‘Automatic detection and classification of hypodense hepatic lesions on contrast-enhanced venous-phase CT’, Med. Phys., 2004, 31, (9), pp. 25842593.
    31. 31)
      • 31. Chang, C.-C., Chen, H.-H., Chang, Y.-C., et al: ‘Computer-aided diagnosis of liver tumors on computed tomography images’, Comput. Methods Programs Biomed., 2017, 145, pp. 4551.
    32. 32)
      • 32. Diamant, I., Goldberger, J., Klang, E., et al: ‘Multi-phase liver lesions classification using relevant visual words based on mutual information’. Proc. Int. Symp. Biomedical Imaging (ISBI), New York, US, 2015, pp. 407410.
    33. 33)
      • 33. Mala, K., Sadasivam, V., Alagappan, S., et al: ‘Neural network based texture analysis of CT images for fatty and cirrhosis liver classification’, Appl. Soft Comput. J., 2015, 32, pp. 8086.
    34. 34)
      • 34. Do, M.N., Vetterli, M.: ‘The contourlet transform: an efficient directional multiresolution image representation’, IEEE Trans. Image Process., 2005, 14, (12), pp. 116.
    35. 35)
      • 35. Magudeeswaran, V., Ravichandran, C.G.: ‘Fuzzy logic-based histogram equalization for image contrast enhancement’, Math. Problems Eng., 2013, 2013, pp. 110.
    36. 36)
      • 36. Vapnik, V.: ‘The nature of statistical learning theory’ (Springer, New York, 1995).
    37. 37)
      • 37. Kalyani, S., ShanthiSwaroop, K.: ‘Classification and assessment of power system security using multiclass SVM’, IEEE Trans. Syst. Man Cybern. C Appl. Rev., 2011, 41, (5), pp. 753758.
    38. 38)
      • 38. Gillespie, A.R.., Kahle, A.B.., Walker, R.E..: ‘Color enhancement of highly correlated images decorrelation and HSI contrast stretches’, Remote Sens. Environ.., 1986, 20, (3), pp. 209235.
    39. 39)
      • 39. Campbell, N.: ‘The decorrelation stretch transformation’, Int. J. Remote Sens., 1996, 17, pp. 19391949.
    40. 40)
      • 40. Belkacem-Boussaid, K., Samsi, S., Lozanski, G., et al: ‘Automatic detection of follicular regions in H&E images using iterative shape index’, Comput. Med. Imaging Graph, 2011, 35, (7), pp. 592602.
    41. 41)
      • 41. Available at https://www.radiantviewer.com/products/radiant-dicom-viewer-standard/.
    42. 42)
      • 42. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, 3, (6), pp. 610621.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5265
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5265
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address