Low-rank structured sparse representation and reduced dictionary learning-based abnormity detection

Low-rank structured sparse representation and reduced dictionary learning-based abnormity detection

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel abnormity detection method is presented which combines the low-rank structured sparse representation and reduced dictionary learning. The multi-scale three-dimensional gradient is used as low-level feature by encoding the spatiotemporal information. A group of reduced sparse dictionaries is learnt by low-rank approximation based on the structured sparsity property of the video sequence. The contribution of this study is three-fold: (i) the normal feature clusters can be represented effectively by the reduced dictionaries which are learnt based on the low-rank nature of the data; (ii) the size of dictionary is determined adaptively by the sparse learning method according to the scene, which makes the representation more compact and efficient; and (iii) the proposed abnormity detection method is of low time complexity and real-time detection can be obtained. The authors have evaluated the proposed method against the state-of-the-art methods on the public datasets and very promising results have been achieved.

Related content

This is a required field
Please enter a valid email address