Visual glare limits of HDR displays in medical imaging

Visual glare limits of HDR displays in medical imaging

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Emerging display technologies are proposing monitors for medical imaging with an extended dynamic range of luminance. Those devices offer the opportunity to extend the range of visual information displayed, but the limits of the human visual system (HVS) in perceiving such information can cancel the advantages. To investigate this problem, we present a set of experiments, to assess the visual response of the HVS to controlled high dynamic range (HDR) content. They analyse the effects of glare. Using a typical HDR display, tailored for medical imaging applications, they first study the dependence of the visible dynamic range from the inter-ocular glare, induced by different backgrounds, then the effect of glare on the detection of test elements on medical radiographic images. Finally, they assess the influence of luminance-equivalent backgrounds with different structure in the detection of test patches. The results of the experiments confirm the glare as a major player in influencing visual information detection. Glare has a significant impact in limiting the amount of visual information actually perceived, consequently limiting analysis capabilities of such images. This confirms the importance of investigating and considering the characteristics of human vision in the design and test of HDR imaging systems.


    1. 1)
      • 1. McCann, J.J., Rizzi, A.: ‘Retinal HDR images: intraocular glare and object size’, J. Soc. Inf. Disp., 2009, 17/11, pp. 913920.
    2. 2)
      • 2. Rizzi, A., McCann, J.J.: ‘Glare-limited appearances in HDR images’, J. Soc. Inf. Disp., 2009, 17/1, pp. 312.
    3. 3)
      • 3. Marchessoux, C., de Paepe, L., Vanovermeire, O., et al: ‘Clinical evaluation of a medical high dynamic range display’, Med. Phys., 2016, 43, (7), pp. 40234031.
    4. 4)
      • 4. McCann, J.J., Rizzi, A.: ‘The art and science of HDR imaging’ (Wiley, Chichester, UK, 2011).
    5. 5)
      • 5. Albani, L., De Paepe, L., Bonfiglio, S., et al: ‘HDR medical display based on dual layer LCD’. Proc. Eighth Int. Symp. Image and Signal Processing and Analysis, Trieste, Italy, 2013, pp. 511515.
    6. 6)
      • 6. Robinson, H.P.: Fading Away. 1858.
    7. 7)
      • 7. Mees, E.K.: ‘Photography’ (The MacMillan Company, New York, USA, 1937).
    8. 8)
      • 8. Debevec, P., Malik, J.: ‘Recovering high dynamic range radiance maps from photographs’. Proc. ACM SIGGRAPH, Los Angeles, 1997, pp. 369378.
    9. 9)
      • 9. Reinhard, E., Ward, G., Pattanaik, S., et al: ‘High dynamic range imaging: acquisition, display, and image-based lighting’ (Morgan Kaufmann, San Francisco, CA, USA, 2006).
    10. 10)
      • 10. Ward, G.: ‘Defining dynamic range’. Proc. ACM SIGGRAPH 2008, Los Angeles, CA, USA, 2008, p. 30:130:3.
    11. 11)
      • 11. Bandoh, Y., Guoping, Q., Okuda, M., et al: ‘Recent advances in high dynamic range imaging technology’. Proc. 17th IEEE Int. Conf. Image Processing (ICIP), Hong Kong, 2010, pp. 31253128.
    12. 12)
      • 12. Seetzen, H., Heidrich, W., Stuerzlinger, W., et al: ‘High dynamic range display systems’. Proc. ACM SIGGRAPH 2004, Los Angeles, 2004, pp. 760768.
    13. 13)
      • 13., accessed May 2015.
    14. 14)
      • 14., accessed May 2015.
    15. 15)
      • 15. Tisdall, M.D., Damberg, G., Wighton, P., et al: ‘Comparing signal detection between novel high-luminance HDR and standard medical LCD displays’, J. Disp. Technol., 2008, 4, (4), pp. 398409.
    16. 16)
      • 16. Yeganeh, H., Wang, Z., Vrscay, E.E.: ‘Adaptive windowing for optimal visualization of medical images based on a structural fidelity measure’. Proc. Ninth Int. Conf. Image Analysis and Recognition, Aveiro, 2012, pp. 321330.
    17. 17)
      • 17. Badano, A., Guarnieri, G., Ramponi, G., et al: ‘Quantization in medical imaging displays: initial observer results for a high-luminance-range, dual-layer LCD’, SID Symp. Dig. Tech. Pap., 2009, 40, (1), pp. 923926.
    18. 18)
      • 18. Mishchenko, M.I., Travis, L.D., Lacis, A.A.: ‘Scattering, absorption, and emission of light by small particles’ (Cambridge University Press, Cambridge, UK, 2002).
    19. 19)
      • 19. Optics and optical instruments: Veiling glare of image forming systems. Definitions and methods of measurement. ISO 9358:1994 Standard, Geneva, 1994.
    20. 20)
      • 20. Talvala, E.V., Adams, A., Horowitz, M., et al: ‘Veiling glare in high dynamic range imaging’, ACM Trans. Graph., 2007, 26, (3), p. 37.
    21. 21)
      • 21. Raskar, R., Agrawal, A., Wilson, C.A., et al: ‘Glare aware photography: 4D ray sampling for reducing glare effects of camera lenses’, ACM Trans. Graph., 2008, 27, (3), p. 56.
    22. 22)
      • 22. Vos, J., van den Berg, T.: ‘Disability glare’, CIE Research note 135/1, 1999.
    23. 23)
      • 23. (2018), accessed January 2018.
    24. 24)
      • 24. van der Mooren, M., van den Berg, T., Coppens, J., et al: ‘Combining in vitro test methods for measuring light scatter in intraocular lenses’, Biomed. Opt. Express, 2011, 2, (3), pp. 505510.
    25. 25)
      • 25. Choi, M., Sharma, D., Zafar, F., et al: ‘Effect of veiling glare on detectability in high-dynamic-range medical images’, J. Disp. Technol., 2014, 10, (5), pp. 420428.
    26. 26)
      • 26. Guarnieri, G., Albani, L., Ramponi, G.: ‘Minimum-error splitting algorithm for a dual layer LCD display: part I: background and theory’, J. Disp. Technol., 2008, 4, (4), pp. 383390.
    27. 27)
      • 27. Vos, J., Walraven, J., van Meeteren, A.: ‘Light profiles of the foveal image of a point source’, Vis. Res., 1976, 16, (2), pp. 215219.
    28. 28)
      • 28. Daw, N.W.: ‘Why after-images are not seen in normal circumstances’, Nature, 1962, 196, pp. 11431145.

Related content

This is a required field
Please enter a valid email address