http://iet.metastore.ingenta.com
1887

ANTIC: antithetic isomeric cluster patterns for medical image retrieval and change detection

ANTIC: antithetic isomeric cluster patterns for medical image retrieval and change detection

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, new feature descriptors are designed for medical image retrieval and change detection applications, respectively. Inspired by isomerism, the authors propose a novel feature descriptor named antithetic isomeric cluster pattern (ANTIC). The ANTIC is defined by the two properties: cluster patterns and antithetic isomerism (ANTI). The cluster pattern corresponds to successive pixel intensity differences at antithetical orientations. Furthermore, the ANTI is characterised by two aspects: first, the clusters are oppositely oriented (antithetical) to each other and second, both adhere to a defined isomeric property. The ANTIC identifies the lines and corner point information in the local neighbourhood across various directions. To attain enhanced robustness, they further proposed multiresolution ANTIC by integrating the multiresolution Gaussian filter. Moreover, to reduce the feature dimensionality, they extended their work to rotation invariant features. The proposed method outperforms other widely used feature descriptors in biomedical and retinopathy image retrieval applications. In addition, they extracted spatiotemporal features by designing intra-ANTIC and inter-ANTIC to detect motion changes in video sequences. They validated the effectiveness of these features by conducting experiments on CDNet 2014 dataset. The proposed descriptor achieves better performance in various challenging conditions for change detection as compared to other state-of-the-art techniques.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5206
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5206
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address