http://iet.metastore.ingenta.com
1887

Automatic multi-circle detection on images using the teaching learning based optimisation algorithm

Automatic multi-circle detection on images using the teaching learning based optimisation algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Circle detection has numerous applications towards industry, robotics, and science in general. Therefore, a significant effort has been made in order to develop an accurate and fast method for circle extraction. Commonly, different techniques such as the ones based on the Hough transform have been widely used because of their robustness. However, these techniques usually demand a considerable computational load and large storage, and therefore meta-heuristic approaches such as evolutionary and swarm-based algorithms have been studied as an alternative. This study introduces a circle-detection method based on a recently proposed meta-heuristic technique: the teaching learning based optimisation algorithm, which is a population-based technique that is inspired by the teaching and learning processes. The algorithm uses the encoding of three points as candidate circles over the edge image. To evaluate if such candidate circles are actually present within the edge map, an objective function is used to guide the search. To validate the efficacy of the proposed approach, several tests using noisy and complex images as input were carried out, and the results were compared with different approaches for circle detection.

References

    1. 1)
      • 1. Greenhalgh, J., Mirmehdi, M.: ‘Real-time detection and recognition of road traffic signs’, IEEE Trans. Intell. Transp. Syst., 2012, 13, pp. 14981506.
    2. 2)
      • 2. Ngo, H., Rakvic, R., Broussard, R., et al: ‘Resource-aware architecture design and implementation of Hough transform for a real-time iris boundary detection system’, IEEE Trans. Consum. Electron., 2014, 60, pp. 485492.
    3. 3)
      • 3. Wan, H.L., Li, Z.C., Qiao, J.P., et al: ‘Non-ideal iris segmentation using anisotropic diffusion’, IET Image Process., 2013, 7, pp. 111120.
    4. 4)
      • 4. Costa, L., Marcondes, C.R.: ‘Shape analysis and classification: theory and practice’ (CRC Press, Boca Raton, FL, 2001).
    5. 5)
      • 5. Zhang, S., Zhang, Z., Wang, H.T.: ‘Research of robot color logo orientation based on Hough transform’. Proc. Int. 2nd Conf. on Intelligent Human-Machine Systems and Cybernetics IHMSC, Nanjing, China, 2010, vol. 1, pp. 5660.
    6. 6)
      • 6. Cai, J., Huang, P., Chen, L., et al: ‘An efficient circle detector not relying on edge detection’, Adv. Space Res., 2016, 57, pp. 23592375.
    7. 7)
      • 7. Illingworth, J., Kittler, J.: ‘The adaptive Hough transform’, IEEE Trans. Pattern Anal. Mach. Intell., 1987, 5, pp. 690698.
    8. 8)
      • 8. Li, H., Lavin, M., Le-Master, R.: ‘Fast Hough transform: a hierarchical approach’, Comput. Graph. Image Process., 1986, 36, pp. 139161.
    9. 9)
      • 9. Ben-Tzvi, D., Sandler, M. B.: ‘A combinatorial Hough transform’, Pattern Recognit.., 1990, 3, pp. 167174.
    10. 10)
      • 10. Shvasytser, H., Bergen, J. R.: ‘Monte Carlo Hough transform’. Proc. 7th Scandinavian Conf. Image anal., Aalborg, Denmark, 1991, pp. 8087.
    11. 11)
      • 11. Kiryati, N., Eldar, Y., Bruckstein, A.: ‘A probabilistic Hough transform’, Pattern Recognit.., 1991, 24, pp. 303316.
    12. 12)
      • 12. Xu, L., Oja, E., Kultanen, P.: ‘A new curve detection method: randomized Hough transform (rht)’, Pattern Recognit. Lett., 1990, 11, pp. 331338.
    13. 13)
      • 13. Chen, T. C., Chung, K. L.: ‘An efficient randomized algorithm for detecting circles’, Comput. Vis. Image Underst., 2001, 83, pp. 172191.
    14. 14)
      • 14. Chung, K. L., Huang, Y. H., Shen, S. M., et al: ‘Efficient sampling strategy and refinement strategy for randomized circle detection’, Pattern Recognit., 2012, 45, pp. 252263.
    15. 15)
      • 15. Jia, L. Q., Peng, C. Z., Liu, H. M., et al: ‘A fast randomized circle detection algorithm’. 2011 4th Int. Congress on Image and Signal Processing (CISP), Shanghai, China, 2011, vol. 2, pp. 820823.
    16. 16)
      • 16. De Marco, T., Cazzato, D., Leo, M., et al: ‘Randomized circle detection with isophotes curvature analysis’, Pattern Recognit., 2015, 48, pp. 411421.
    17. 17)
      • 17. Zhang, H., Wiklund, K., Andersson, M.: ‘A fast and robust circle detection method using isosceles triangles sampling’, Pattern Recognit., 2016, 54, pp. 218228.
    18. 18)
      • 18. Yu, H., Wang, T.: ‘Vision-based technique for circle detection and measurement using lookup table and bitwise centre accumulator’, JOSA A, 2017, 34, pp. 415423.
    19. 19)
      • 19. Rosin, P. L., West, G. A. W.: ‘Nonparametric segmentation of curves into various representations’, IEEE Trans. Pattern Anal. Mach. Intell., 1995, 17, pp. 11401153.
    20. 20)
      • 20. Mai, F., Hung, Y. S., Zhong, H., et al: ‘A hierarchical approach for fast and robust ellipse extraction’, Pattern Recognit., 2008, 41, pp. 25122524.
    21. 21)
      • 21. Akinlar, C., Topal, C.: ‘EDCircles: a real-time circle detector with a false detection control’, Pattern Recognit., 2013, 46, pp. 725740.
    22. 22)
      • 22. Ayala-Ramirez, V., Garcia-Capulin, C.H., Pérez-García, A., et al: ‘Circle detection on images using genetic algorithms’, Pattern Recognit. Lett., 2006, 27, pp. 652657.
    23. 23)
      • 23. Dong, N., Wu, C.H., Ip, W.H., et al: ‘An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection’, Comput. Math. Appl., 2012, 64, pp. 18861902.
    24. 24)
      • 24. Cuevas, E., Sención-Echauri, F., Zaldivar, D., et al: ‘Multi-circle detection on images using artificial bee colony (ABC) optimization’, Soft Comput., 2012, 16, pp. 281296.
    25. 25)
      • 25. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., et al: ‘Circle detection using discrete differential evolution optimization’, Pattern Anal. Appl., 2011, 14, pp. 93107.
    26. 26)
      • 26. Fourie, J.: ‘Robust circle detection using harmony search’, J. Optim., 2017, 2017, pp. 111.
    27. 27)
      • 27. Cuevas, E., Wario, F., Zaldivar, D., et al: ‘Circle detection on images using learning automata’, IET Comput. Vis., 2012, 6, pp. 121132.
    28. 28)
      • 28. Rao, R.V., Savsani, V.J., Vakharia, D.: ‘Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems’, Comput. Aided Des., 2011, 43, pp. 303315.
    29. 29)
      • 29. Rao, R.V., Savsani, V.J., Vakharia, D.: ‘Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems’, Inf. Sci., 2012, 183, pp. 115.
    30. 30)
      • 30. Rao, R.: ‘Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems’, Decis. Sci. Lett., 2016, 5, pp. 130.
    31. 31)
      • 31. Amiri, B.: ‘Application of teaching-learning-based optimization algorithm on cluster analysis’, J. Basic Appl. Sci. Res., 2012, 2, pp. 1179511802.
    32. 32)
      • 32. Nayak, M., Nayak, C., Rout, P.: ‘Application of multi-objective teaching learning based optimization algorithm to optimal power flow problem’, Proc. Technol., 2012, 6, pp. 255264.
    33. 33)
      • 33. Suzuki, S.: ‘Topological structural analysis of digitized binary images by border following’, Comput. Graph. Image Process., 1985, 30, pp. 3246.
    34. 34)
      • 34. Van Aken, J.: ‘An efficient ellipse-drawing algorithm’, IEEE Comput. Graph. Appl., 1984, 4, pp. 2435.
    35. 35)
      • 35. Cuevas, E., Osuna, V., Oliva, D.: ‘Multi-circle detection on images’, in ‘Evolutionary computation techniques: a comparative perspective’ (Springer International Publishing, Berlin, Heidelberg, 2017), pp. 3564.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5193
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5193
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address