http://iet.metastore.ingenta.com
1887

Zero-shot multi-label learning via label factorisation

Zero-shot multi-label learning via label factorisation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers the zero-shot learning problem under the multi-label setting where each test sample is associated with multiple labels that are unseen in training data. The authors propose a novel learning framework based on label factorisation for this problem. Specifically, the authors’ framework takes three key issues into consideration and addresses them in a unified way. The first is knowledge transfer that utilises information from seen classes to build recognition models for unseen classes. The second is label correlation which means that labels which have different semantics may co-occur frequently. This is an important issue in multi-label learning. The authors propose to learn a shared latent space by label factorisation and use the label semantics as the decoding function, which can address both issues. The third is the predictability which requires the learned latent space to be strongly related to the visual features. It is guaranteed by incorporating a regression model into the learning framework. The authors derive two specific formulations from the general framework and propose the corresponding learning algorithms. The authors conducted extensive experiments on three multi-label data sets. The results demonstrated the effectiveness.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5131
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5131
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address