Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Combining RtL and LtR HMMs to recognise handwritten Farsi words of small- and medium-sized vocabularies

Loading full text...

Full text loading...

/deliver/fulltext/iet-cvi/12/6/IET-CVI.2017.0645.html;jsessionid=65i1qja13po83.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cvi.2017.0645&mimeType=html&fmt=ahah

References

    1. 1)
      • 54. Michael, O.: ‘Sensory evaluation of food: statistical methods and procedures’ (CRC Press, New York, NY, USA, 1986), p. 487, ISBN 0-824-77337-3.
    2. 2)
      • 41. Grosicki, E., Carré, M., Brodin, J.M., et al: ‘Results of the RIMES evaluation campaign for handwritten mail processing’. Tenth Int. Conf. Document Analysis and Recognition, Barcelona, 2009, pp. 941945.
    3. 3)
      • 31. Zacher, B., Lidschreiber, M., Cramer, P., et al: ‘Annotation of genomics data using bidirectional hidden Markov models unveils variations in Pol II transcription cycle’, Mol. Syst. Biol., 2014, 10, (12), p. 768.
    4. 4)
      • 43. Azeem, S.A., Ahmed, H.: ‘Effective technique for the recognition of offline Arabic handwritten words using hidden Markov models’, Int. J. Doc. Anal. Recognit., 2013, 16, (4), pp. 399412.
    5. 5)
      • 12. Mozaffari, S., Faez, K., Märgner, V., et al: ‘Lexicon reduction using dots for off-line Farsi/Arabic handwritten word recognition’, Pattern Recognit. Lett., 2008, 29, (6), pp. 724734.
    6. 6)
      • 51. Arani, S.A.A.A., Kabir, E., Ebrahimpour, R.: ‘Handwritten Farsi word recognition using NN-based fusion of HMM classifiers with different types of features’, Int. J. Image Graph., accepted, to be published.
    7. 7)
      • 49. Cruz, R.M.O., Cavalcanti, G.D.C., Ren, T.I.: ‘An ensemble classifier for offline cursive character recognition using multiple feature extraction techniques’. Int. Joint Conf. Neural Networks, Barcelona, Spain, 2010, pp. 18.
    8. 8)
      • 3. Ye, M., Viola, P.A., Raghupathy, S., et al: ‘Learning to group text lines and regions in free form handwritten notes’. Ninth Int. Conf. Document Analysis and Recognition, Curitiba, 2007, vol. 1, pp. 2832.
    9. 9)
      • 9. Masroori, K., Kabir, E.: ‘Handwritten Farsi word recognition using DTW algorithm’, Daneshvar J., 1999, 25, pp. 5968, in Farsi.
    10. 10)
      • 17. Maitra, D.S., Bhattacharya, U., Parui, S.K.: ‘CNN based common approach to handwritten character recognition of multiple scripts’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 10211025.
    11. 11)
      • 35. Kuncheva, L.I.: ‘Combining pattern classifiers: methods and algorithms’ (Wiley-Interscience, Hoboken, NJ, USA, 2014, 2nd edn.).
    12. 12)
      • 19. Yang, W., Jin, L., Xie, Z., et al: ‘Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 551555.
    13. 13)
      • 2. Pal, U., Belaïd, A., Choisy, C.: ‘Touching numeral segmentation using water reservoir concept’, Pattern Recognit. Lett., 2003, 24, (1–3), pp. 261272.
    14. 14)
      • 44. Verma, B., Gader, P., Chen, W.: ‘Fusion of multiple handwritten word recognition techniques’, Pattern Recognit. Lett., 2001, 22, (9), pp. 991998.
    15. 15)
      • 5. Steinherz, T., Rivlin, E., Intrator, N.: ‘Off-line cursive script word recognition: a survey’, Int. J. Doc. Anal. Recognit., 1999, 2, (2), pp. 90110.
    16. 16)
      • 23. Graves, A., Schmidhuber, J.: ‘Offline handwriting recognition with multidimensional recurrent neural networks’. Advances in Neural Information Processing Systems, Vancouver, Canada, 2008, vol. 21.
    17. 17)
      • 13. Davoudi, H., Cheriet, M., Kabir, E.: ‘Lexicon reduction of handwritten Arabic subwords based on the prominent shape regions’, Int. J. Doc. Anal. Recognit., 2016, 19, (2), pp. 139153.
    18. 18)
      • 4. Govindaraju, V., Xue, H.: ‘Fast handwriting recognition for indexing historical documents’. Proc. First Int. Workshop Document Image Analysis for Libraries, Palo Alto, 2004, pp. 314320.
    19. 19)
      • 40. Pechwitz, M., Maddouri, S.S., Märgner, V., et al: ‘IFN/ENIT -database of handwritten Arabic words’. Colloque Int. Francophone Surl'Ecrit et le Doucement, Hammamet, Tunisia, 2002, pp. 129136.
    20. 20)
      • 42. Burger, T., Kessentini, Y., Paquet, T.: ‘Dempster–Shafer based rejection strategy for handwritten word recognition’. Int. Conf. Document Analysis and Recognition, Beijing, 2011, pp. 528532.
    21. 21)
      • 14. Frinken, V., Uchida, S.: ‘Deep BLSTM neural networks for unconstrained continuous handwritten text recognition’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 911915.
    22. 22)
      • 21. Dehghan, M., Faez, K., Ahmadi, M., et al: ‘Unconstrained Farsi handwritten word recognition using fuzzy vector quantization and hidden Markov models’, Pattern Recognit. Lett., 2001, 22, (2), pp. 209214.
    23. 23)
      • 39. Kessentini, Y., Burger, T., Paquet, T.: ‘Evidential combination of multiple HMM classifiers for multi-script handwriting recognition’, Comput. Intell. Knowl.-Based Syst. Des., 2010, 6178, pp. 445454.
    24. 24)
      • 29. Zheng, Y., Cai, Y., Zhong, G., et al: ‘Stretching deep architectures for text recognition’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 236240.
    25. 25)
      • 53. Mohamed, M., Gader, P.: ‘Handwritten word recognition using segmentation-free hidden Markov modeling and segmentation based dynamic programming techniques’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, (5), pp. 548554.
    26. 26)
      • 48. Chim, Y.C., Kassim, A.A., Ibrahim, Y.: ‘Dual classifier system for hand printed alphanumeric character recognition’, Pattern Anal. Appl., 1998, 1, (3), pp. 155162.
    27. 27)
      • 46. Salimi, H., Giveki, D.: ‘Farsi/Arabic handwritten digit recognition based on ensemble of SVD classifiers and reliable multi-phase PSO combination rule’, Int. J. Doc. Anal. Recognit., 2013, 16, (4), pp. 371386.
    28. 28)
      • 22. Khorsheed, M.S.: ‘Recognizing handwritten Arabic manuscripts using a single hidden Markov model’, Pattern Recognit. Lett., 2003, 24, (14), pp. 22352242.
    29. 29)
      • 50. Abed, H., Märgner, V.: ‘A framework for the combination of different Arabic handwritten word recognition systems’. Int. Conf. Pattern Recognition, Istanbul, Turkey, 2010, pp. 19041907.
    30. 30)
      • 45. Hull, J.J.: ‘A database for handwritten text recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 1994, 16, (5), pp. 550554.
    31. 31)
      • 27. Liu, X., Tang, B., Wang, Z., et al: ‘Chart classification by combining deep convolutional networks and deep belief networks’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 801805.
    32. 32)
      • 30. Arani, S.A.A.A., Kabir, E., Ebrahimpour, R.: ‘Farsi handwritten word recognition using image gradient and hidden Markov model’. Ninth Conf. Machine Vision and Image Processing, Tehran, Iran, 2015, in Farsi.
    33. 33)
      • 11. Bayesteh, E., Ahmadifard, A., Khosravi, H.: ‘A lexicon reduction method based on clustering word images in offline Farsi handwritten word recognition systems’. Seventh Iranian Conf. Machine Vision and Image Processing (MVIP), Tehran, Iran, 2011.
    34. 34)
      • 18. Kim, I., Xie, X.: ‘Handwritten Hangul recognition using deep convolutional neural networks’, Int. J. Doc. Anal. Recognit., 2015, 18, (1), pp. 113.
    35. 35)
      • 47. Frinken, V., Peter, T., Fischer, A., et al: ‘Improved handwriting recognition by combining two forms of hidden Markov models and a recurrent neural network’, Computer Analysis of Images and Patterns, Berlin, Heidelberg, Germany, 2009 (LNCS, 5702), pp. 189196.
    36. 36)
      • 16. Graves, A., Liwicki, M., Fernández, S., et al: ‘A novel connectionist system for unconstrained handwriting recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (5), pp. 855868.
    37. 37)
      • 6. Lu, Y., Shridhar, M.: ‘Character segmentation in handwritten words – an overview’, Pattern Recognit., 1996, 29, (1), pp. 7796.
    38. 38)
      • 7. Madhvanath, S., Govindaraju, V.: ‘The role of holistic paradigms in handwritten word recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (2), pp. 149164.
    39. 39)
      • 38. Huang, Y.S., Suen, C.Y.: ‘A method of combining multiple experts for the recognition of unconstrained handwritten numerals’, IEEE Trans. Pattern Anal. Mach. Intell., 1995, 17, (1), pp. 9094.
    40. 40)
      • 32. Ejlali, N., Pezeshk, H.: ‘A bidirectional hidden Markov model in linear memory’, J. Stat. Sci., 2009, 2, (2), pp. 131148.
    41. 41)
      • 26. Abandah, G.A., Graves, A., Al-Shagoor, B., et al: ‘Automatic diacritization of Arabic text using recurrent neural networks’, Int. J. Doc. Anal. Recognit., 2015, 18, (2), pp. 183197.
    42. 42)
      • 28. Harley, A.W., Ufkes, A., Derpanis, K.G.: ‘Evaluation of deep convolutional nets for document image classification and retrieval’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 991995.
    43. 43)
      • 8. Choisy, C., Belaïd, A.: ‘Cross-learning in analytic word recognition without segmentation’, Int. J. Doc. Anal. Recognit., 2002, 4, (4), pp. 281289.
    44. 44)
      • 24. Chherawala, Y., Roy, P.P., Cheriet, M.: ‘Combination of context-dependent bidirectional long short-term memory classifiers for robust offline handwriting recognition’, Pattern Recognit. Lett., 2017, 90, pp. 5864.
    45. 45)
      • 37. Günter, S., Bunke, H.: ‘Ensembles of classifiers for handwritten word recognition’, Int. J. Doc. Anal. Recognit., 2003, 5, (4), pp. 224232.
    46. 46)
      • 34. Pezeshk, H., Naghizadeh, S., Malekpour, S. A., et al: ‘A modified bidirectional hidden Markov model and its application in protein secondary structure prediction’. Second Int. Conf. Advanced Computer Control (ICACC), Shenyang, China, 2010.
    47. 47)
      • 10. Arani, S.A.A.A., Kabir, E.: ‘Neural networks combination based on negative correlation learning for handwritten Farsi word recognition’. 12th Conf. Intelligent Systems, Bam, Kerman, Iran, 2014, in Farsi.
    48. 48)
      • 25. Chherawala, Y., Roy, P.P., Cheriet, M.: ‘Feature set evaluation for offline handwriting recognition systems: application to the recurrent neural network model’, IEEE Trans. Cybern., 2016, 46, (12), pp. 28252836.
    49. 49)
      • 36. Xu, L., Krzyzak, A., Suen, C.Y.: ‘Methods of combining multiple classifiers and their applications to handwriting recognition’, IEEE Trans. Syst. Man Cybern., 1992, 22, (3), pp. 418435.
    50. 50)
      • 15. Marti, U.V., Bunke, H.: ‘The IAM-database: an English sentence database for offline handwriting recognition’, Int. J. Doc. Anal. Recognit., 2002, 5, (1), pp. 3946.
    51. 51)
      • 52. Azmi, R., Kabir, E.: ‘A new segmentation technique for omnifont Farsi text’, Pattern Recognit. Lett., 2001, 22, (2), pp. 97104.
    52. 52)
      • 20. Dehghan, M., Faez, K., Ahmadi, M., et al: ‘Handwritten Farsi (Arabic) word recognition: a holistic approach using discrete HMM’, Pattern Recognit., 2001, 34, (5), pp. 10571065.
    53. 53)
      • 1. Vajda, S., Roy, K., Pal, U., et al: ‘Automation of Indian postal documents written in Bangla and English’, Int. J. Pattern Recognit. Artif. Intell., 2009, 23, (8), pp. 15991632.
    54. 54)
      • 33. Kadim, A., Lazrek, A.: ‘Bidirectional HMM-based Arabic POS tagging’, Int. J. Speech Technol., 2016, 19, (2), pp. 303312.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0645
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0645
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address