access icon free Variational image fusion approach based on TGV and local information

In this study, the authors propose a variational approach based on total generalised variation (TGV) and local gradient information to fuse multi-focus images as well as medical images of computed tomography and magnetic resonance. They use the second-order TGV as the regularisation term and local gradient information as the fusion weight to extract image features. To compute the new model effectively, the primal-dual algorithm is carried out. Various experiments are made to verify the effectiveness of the proposed methods.

Inspec keywords: feature extraction; medical image processing; computerised tomography; gradient methods; biomedical MRI; image fusion

Other keywords: primal-dual algorithm; second-order TGV; local gradient information; image feature extraction; computed tomography; magnetic resonance; total generalised variation; medical images; variational image fusion approach

Subjects: Computer vision and image processing techniques; Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis); Image recognition; X-rays and particle beams (medical uses); Numerical approximation and analysis; Medical magnetic resonance imaging and spectroscopy; Patient diagnostic methods and instrumentation; X-ray techniques: radiography and computed tomography (biomedical imaging/measurement); Biology and medical computing; Biomedical magnetic resonance imaging and spectroscopy

References

    1. 1)
      • 9. Bertalmio, M., Levine, S.: ‘Variational approach for the fusion of exposure bracketed pairs’, IEEE Trans. Image Process., 2013, 22, pp. 712723.
    2. 2)
      • 2. Smith, M.I., Heather, J.P.: ‘A review of image fusion technology in 2005’, Proc. SPIE, 2005, 5782, pp. 2945.
    3. 3)
      • 17. Knoll, F., Bredies, K., Pock, T., et al: ‘Second order total generalized variation (TGV) for MRI’, Magn. Reson. Med., 2011, 65, pp. 480491.
    4. 4)
      • 12. Ludusan, C., Lavialle, O.: ‘Multifocus image fusion and denoising: a variational approach’, Pattern Recognit. Lett., 2012, 33, pp. 13881396.
    5. 5)
      • 11. Tang, S., Shen, C., Zhang, G.: ‘Adaptive regularized scheme for remote sensing image fusion’, Front. Earth Sci., 2016, 10, pp. 236244.
    6. 6)
      • 13. Hafner, D., Weickert, J.: ‘Variational exposure fusion with optimal local contrast’. Proc. Int. Conf. Scale Space and Variational Methods in Computer Vision, Cham, 2015, vol. 9087, pp. 425436.
    7. 7)
      • 5. Wang, W.W., Shui, P.L., Feng, X.C.: ‘Variational models for fusion and denoising of multifocus images’, IEEE Signal Process. Lett., 2008, 15, pp. 6568.
    8. 8)
      • 16. Lagerwerf, M.J.: ‘Higher order variational methods for photoacoustic tomography’. MSc, University of Twenti, 2015.
    9. 9)
      • 10. Zhou, Z.Q., Li, S., Wang, B.: ‘Multi-scale weighted gradient-based fusion for multi-focus images’, Inf. Fusion, 2014, 20, pp. 6072.
    10. 10)
      • 6. Sarode, M.V., Deshmukh, P.R.: ‘Evaluation of fusion and denoising algorithm for multifocus images’. Proc. Int. Conf. World Congress on Engineering, London, UK, July 2011, vol. 2, pp. 12601263.
    11. 11)
      • 18. Wang, S., Guo, W., Huang, T.Z.: ‘Weighted total generalized variation for compressive sensing reconstruction’. Proc. 11th Int. Conf. Sampling Theory and Applications, Washington, DC, USA, May 2015, pp. 244248.
    12. 12)
      • 8. Piella, G.: ‘Image fusion for enhanced visualization: a variational approach’, Int. J. Comput. Vis., 2009, 83, pp. 111.
    13. 13)
      • 3. James, A.P., Belur, V.D.: ‘Medical image fusion: a survey of the state of the art’, Inf. Fusion, 2004, 19, pp. 419.
    14. 14)
      • 7. Socolinsky, D.A., Wolff, L.B.: ‘Multispectral image visualization through first-order fusion’, IEEE Trans. Image Process., 2002, 11, pp. 923931.
    15. 15)
      • 1. Goshtasby, A.A., Nikolov, S.: ‘Image fusion: advances in the state of the art’, Inf. Fusion, 2007, 8, pp. 114118.
    16. 16)
      • 14. Bredies, K., Kunisch, K., Pock, T.: ‘Total generalized variation’, SIAM J. Imaging Sci., 2010, 3, pp. 492526.
    17. 17)
      • 4. Rudin, L.I., Osher, S., Fatemi, E.: ‘Nonlinear total variational based noise removal algorithms’, Physica D, 1992, 60, pp. 259268.
    18. 18)
      • 20. Chambolle, A., Pock, T.: ‘A first-order primal-dual algorithm for convex problems with applications to imaging’, J. Math. Imaging Vis., 2011, 40, pp. 120145.
    19. 19)
      • 15. Lu, H., Wei, J., Liu, Q., et al: ‘A dictionary learning method with total generalized variation for MRI reconstruction’, Int. J. Biomed. Imaging, 2016, 2016, pp. 751.
    20. 20)
      • 19. Pock, T., Zebedin, L., Bischof, H.: ‘TGV-fusion’, Lect. Notes Comput. Sci., 2011, 6570, pp. 245258.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0451
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0451
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading